

Discovery of Cascade b Baryon, ${\Xi_b}^{\pm}$

<u>G.Borisov</u>, L.Vertogradov for D0 collaboration

State of B-hadrons' mass spectroscopy

• Mesons:

- B^+ , B^0 , B_s , B_c^+ (established)
- B* (established),
- B_d^{**} (sent to PRL DØ, preliminary CDF)
- B_s^{**} (preliminary DØ and CDF)

• Barions:

- Λ_{b} (established)
- Σ_{b}^{+} and Σ_{b}^{*+} (sent to PRL CDF)

 From theory: M(Λ_b)< M(Ξ_b) < M(Σ_b) so, 5.624 GeV < M(Ξ_b) < 5.808 GeV
 Life time estimation (LEP): τ(Ξ_b)=1.42±0.28±0.24 ps Our goal – charged Ξ_{b} (the first ever particle that contains three quarks from three different generations)

B - baryons

- Not much of experimental data till 2006:
 - Direct observation of $\Lambda_{\rm b}$;
 - Indirect sign of Ξ_b : excess of pairs Ξ - ℓ with the same charges (ALEPH,DELPHI);
- Theory predictions for the $\Xi_{\rm b}$ mass:
 - $M(\Xi_b) = 5805.7 \pm 8.1 \text{ M}_{3}\text{B/c}^2$;
 - $M(\Sigma_b) = 5824.2 \pm 9.0 \text{ M}_{3}\text{B/c}^2;$
 - $M(\Omega_b) = 6068.7 \pm 11.1 \text{ M}_{\Im}\text{B/c}^2$; E. Jenkins, Phys.Rev. D55 (1997) R10-R12
 - M(Ξ_b) = 5762 ÷ 5788 M₃B/c²; N.Mathur a.o., Phys.Rev. D66 (2002) 014502
 - M(Ξ_b) = 5790 ÷ 5800 M₃B/c²;

M.Karliner a.o., arXiv.org:hep-ph/0706.2163;

Why to study the b-baryons?

Laboratory to study the nonperturbative QCD and potential models:

- heavy b-quark → simplification of theoretical description
- base model: light di-quark system qq orbiting a heavy bquark "nucleus" Q
- There is analogy with hydrogen/helium atoms

How to search $\Xi_{\rm b}$?

- Today, only Tevatron can produce b baryons. It was possible on LEP but with 1000 times less cross section value.
- The "gold" channel to study b-hadrons decays with J/ψ production. They are rather rear (BR ~ 10⁻⁴), but are very clear channels with efficient trigger.
- D0 installation with its excellent Muon Detector is very suitable for search $\Xi_b \rightarrow J/\psi \Xi$ where $J/\psi \rightarrow \mu + \mu^-$, $\Xi \rightarrow \Lambda^0 + \pi$, and $\Lambda^0 \rightarrow p + \pi$

Tevatron and DØ detector

Here only the Run IIa analysis is presented !

Wide aperture Muon Spectrometer & Trigger. There are large statistics collected for $B \rightarrow J/\psi + X$ and semileptonic $B \rightarrow \mu + X$.

Main features of the decay

$$\Xi_{b}^{-} \rightarrow J/\psi + \Xi^{-}$$

- We need to reconstruct 5 daughter particles:
 - $J/\psi {\rightarrow} \mu {}^+\mu^-$
 - − Λ →p+ π
 - $\Xi \rightarrow \Lambda + \pi$
- Some decay products (p, π⁻, π⁻) have big enough impact parameter values (relative to the PV).
- Charge correlation: both pions must be the same sign of charge ("true combination")

Impact parameter's selection

Preliminary selection: mass distributions

Where from the background is?

- Prompt J/ψ :
 - $\sim 80\%$ J/ ψ are produced at the primary interaction.
- Real b—hadrons:
 - The rest ~20% J/ ψ are from the decay of real b—hadrons.
- Combinatorial backgrounds:
 - Real J/ ψ & wrong Ξ^-
 - Wrong J/ ψ & wrong Ξ^-
 - Wrong J/ ψ & real Ξ^-
 - Real J/ ψ & real Ξ^- that is not from Ξ_b^-

See events with "wrong combination" Ξ .

Selection cuts to suppress the background

- To keep high signal efficiency they must be "soft".
- To select the cuts and to estimate the background we used:
 - Our experimental results for $\Lambda_b{\rightarrow} J/\psi\Lambda$
 - Sample of events with "wrong combination Ξ "
 - Sideband events near the J/ ψ peak
 - Sideband events near the Ξ^- peak
 - Monte Carlo Ξ_b^- events (for example, for pions from the Ξ decay)

1: P_T(π⁻) οτ Λ

2: P_T(π⁻) οτ Ξ⁻

What we expected: signal MC

Intermediate Resonances

Consistency checks

Decay length distribution

Background: Wrong sign combinations

Background: J/ψ sideband events

Background: E⁻ sideband events

Significance of the peak

- Two likelihood fits are perform:
 - 1. Signal + background hypothesis (L_{S+B})
 - 2. Only background hypothesis (L_B)
- We evaluate the significance:

$$\sqrt{-2\Delta \ln L} = \sqrt{-2\ln\left(\frac{L_B}{L_{S+B}}\right)}$$

• Significance of the observed signal: 5.5σ

Comparison with theory

Run 179200, Event 55278820, $M(\Xi_b) = 5.788$ GeV

The same, only Ξ_b daughter tracks

Run 179200, Event 55278820, $M(\Xi_b) = 5.788$ GeV

XY-projection

D0 Note 5403

Version 4.1 as June 5, 2007

Observation of the heavy barion Ξ_b^-

E. De La Cruz Burelo, H.A. Neal, and J. Qain

University of Michigan

B. Abbott

University of Oklahoma

G.D. Alexeev, Yu.P. Merekov, G.A. Panov, A.M. Rozhdestvensky, Yu.L.Vertogradova, L.S. Vertogradov

Joint Institute for Nuclear Research, Russia

Conclusions

- The new stable particle $\Xi_{\rm b}$ is discovered by DØ and later by CDF;
- Its mass agrees with theoretical expectations:
 - $-M(\Xi_b) = 5.774 \pm 0.011 \text{ GeV} (D\emptyset);$
 - $-M(\Xi_b) = 5.7929 \pm 0.0025 \text{ GeV} (CDF);$

Backup slides

Preliminary selection of events and reconstruction of Ξ_b

- Reconstruction of $J/\psi \rightarrow \mu + \mu^-$ vertex (P $\chi^2 > 1\%$, p_T > 5 GeV/c², mass 2.80÷3.35 GeV/c²)
- Reconstruction of $\Lambda \rightarrow p\pi$ candidates (P $\chi^2 > 1\%$, mass 1.105÷1.125 GeV/c²)
- Reconstruction of $\Xi \rightarrow \Lambda + \pi$ candidates (P χ^2 > 1%, mass 1.305÷1.340 GeV/c²)
- Errors of the Λ and Ξ decay lengths < 0.5 cm (in XY plane), significance of every measured decay length must be > 4.
- Combination of J/ ψ and Ξ as a candidate to Ξ_b (P $\chi^2 > 8\%$, angle < $\pi/2$ in XY plane) Error of its decay length < 0.05 cm
- As a result of the preliminary selection there were 2308 events with "true combination" of the pions' charges and 1124 events with "wrong combinations" (see slide 7).
- Rather simple mass correction $M = M(\Xi_b) M(\Xi) M(J/\psi) + M_{PDG} (\Xi) + M_{PDG} (J/\psi)$ was applied for every event.

In summary, Ξ_b were selected with such criteria

- Λ→pπ:
 - $-P_{T}(p)>0.7 \text{ GeV/c}$
 - $P_{T}(\pi) > 0.3 \text{ GeV/c}$
- $\Xi^- \rightarrow \Lambda \pi$:
 - $P_T(\pi) > 0.2 \text{ GeV/c}^{-1}$
 - Transverse decay
 length > 0.5 cm

suppression of signal 39.7%

suppr. of background 91.6%

- suppr. of signal 1.7% suppr. of backgd 56.4%
- Collinearity > 0.99
- Ξ_b :life time / its error >2

18% (signal) 56% (backgrd)