

The Status of the International Linear Collider

Brian Foster (Oxford & GDE)

XIIIth Lomonosov Conference Moscow

B. Foster - Lomonosov 08/07

Global Design Effort

1

ilc iic

Why e⁺e⁻?

- Simple particles
- Well defined: energy angular momentum
- E can be scanned precisely
- Particles
 produced
 democratically
- Final states generally fully reconstructable

Why/what is ILC?

Why do we want to build a high-energy e⁺e⁻ collider?
 Physics case rests on three legs:known phenomena that ILC will definitely study-top quark;

0.13

 the Higgs: for which there is very strong indirect evidence and if LHC doesn't find it then ILC will be essential to understand why; new particles for

which there is very

LHC 0.12 2 U 2 U 3 0.10 0.09 0.07 0.05 80 85 90 95 100 105 115 110 $M_{\gamma}(GeV)$

strong theoretical prejudice B. Foster - Lomonosov 08/07

İİL

Why/what is ILC?

 Furthermore the high precision of e⁺e⁻ means that it is sensitive to phenomena far above its CM energy because of quantum corrections – as LEP proved.

ilr

İİL

ILC Parameters

- E_{cm} adjustable from 200 500 GeV
- Luminosity $\int Ldt = 500 \text{ fb}^{-1}$ in 4 years

(corresponds to $2*10^{34}$ cm⁻² s⁻¹)

- Ability to scan between 200 and 500 GeV
- Energy stability and precision below 0.1%
- Electron polarization of at least 80%
- The machine must be upgradeable to 1 TeV

ILC Reference Design Report ~700 Contributors from 84 Institutes

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture

LIST OF CONTRIBUTORS

3.00pm, May 4, 2007

Geraid Aarons⁶⁰, David Adey⁶⁰, Chris Adolphsen⁶⁰, Ilya Agapov⁵⁸, Jung-Keun Ahn⁵⁰ Mitzuo Alemoto²⁴, Maria del Carmen Alabau³⁷, Michael Albrecht⁷⁹, David Alexin⁵⁸ Jim Alexander¹⁵, Wade Allison⁴¹, John Amann⁴⁰, Shozo Anami²⁴, Terry Anderson Michael Anerella³, Deepa Angal-Kalinin^{12,0}, Sergie Antipov², Claire Antoine^{8,23} Rob Appleto^{12,70}, Salae Araki²⁴, Tag Arkan²⁷, Ned Arnold², Ra⁶ Appold⁴⁰. Rob Applety^{11,10}, Saka Araki¹¹, Ting Arkan¹¹, Ned Arabil¹², Ney Angold¹², Xavier Arm¹², Alexander Aryaba¹², Fol Andriff, David B. Auguaffur²¹, Devis Baas⁴⁴ Nigel Baddama¹¹, Ian R. Baley^{12,17}, N. I. Balalykin³⁵, Jean-Loc Halby¹¹, Mantee Balf¹² Philip Bambade¹⁰, Synichi Ban¹⁴, Kati Ban¹⁰, Baka Baaryki¹², Toper Bach^{12,10}, Desmond P. Barber^{14,121}, D. Yu. Bardin,¹⁵, Barry Bach¹²¹, Roper Bach^{12,13}, Maurs Barcos^{21,22}, Yuri Batygin¹⁰, D. Elwyn Baynham⁷, 40m (Baard^{12,4}, Leo Bellanton¹² Paul Bellowo⁴⁹, Lym D. Beutsen⁴⁰, Martin Bench⁴⁰, Simona Betton⁴¹, Visod Baradway⁴⁰, Marica Biagini⁴⁰, Wilhelm Biatowate¹³, Thomas Betton⁴¹ John Bierwagen⁴⁰, Alison Birch^{12,6}, Victorfa Backmore⁴¹, Grahame Blair⁵⁸ Christian Boffo²⁴, Courtlandt Bohn⁵⁰, V. I. Boiko³⁶, Bhuard N. Bondarchuk Commun. Door Commun. Commun. Y. J. Berger, J. Bornardi, A. Bornardi, Y. J. Bornard, C. Bornard, C. Bornard, C. Bornard, C. Bornard, J. Bornard, S. Bornard, S. Bornard, S. Bornard, S. Bornard, J. Bornard, S. Bornard, C. Bornard, C. Bornard, S. Bornard, S. Bornard, S. Bornard, S. Bornard, S. Bornard, S. Bornard, S. Bornard, S. Bornard, S. Bornard, M. Bernard, J. Samo, B. Bornard, J. Meine, Berden, S. Craig, Brookshy⁴⁰, Timothy A. Berosnik, "Jamie H. Bornard," Metania, Berdenard, "Commun. Science, Berley, Commun. 2014, Science Craig Brockaly¹⁰, Tanotty A. Beoseni, Jamin H. Beowyall¹⁰, Meanie Brachon², Heiser Bruck¹¹, Annan J. Braumitt¹¹, Yu A. Biddgen²⁰, Karten Bosset¹¹, Eugene Balyak¹⁰, Adrana Bonzul^{12,10}, Craig Burfhart¹⁰, Pailip Burrows¹¹, Graven Burt¹¹, David Birthon²⁰, Yuniai G.¹⁰, Olein Caswan²⁰, Richard Caserl¹⁰, F. Sophen Carr², Harqf F. Castes¹¹, John Carles¹¹, John Carwan²⁰, Richard Caserl¹⁰, Georgic Caulita¹¹, Hinti Gueze¹¹, John Carles¹¹, John Carwan²⁰, Richard Caserl¹⁰, Jian Cheng²¹, M. Chevallite¹¹, William Chackering¹⁰, Jan-bruk Che³¹, Genn Christian Mike Canch¹¹, Ganding Growt¹¹, Christian Charlo¹¹, Don G. Carlo¹¹, James A. Gal¹¹, David Birthon¹², Tahim Carlo¹¹, Dud Cos¹¹, John Cogan¹⁰, Christophill ¹², John¹², Banabeth Chaever¹², Tahim Carles¹¹, Dud Cos¹¹, John Cogan¹⁰, Christophill ¹³, James A. Gal¹¹, David Charlo¹², Tahim Carles¹¹, Chro Cong¹⁰, Christophill ¹⁴, M. Chevalul¹², Tahim Carles¹¹, Dud Cos¹¹, John¹⁰, Christophill ¹⁴, Mark¹¹, David Charles¹², Tahim Carles¹¹, Chro Costan¹⁰, Christophill ¹⁴, Mark¹¹, David Charlo¹², Tahim Carles¹¹, Chro Costan¹⁰, Christophill ¹⁴, Mark¹¹, David Charles¹², Tahim Carles¹¹, Chro Costan¹⁰, Christophill¹⁴, Chron Charles¹¹, ¹⁴, ¹ Ed Cock⁴¹, Peter Cooke^{12,15}, Lufira Corner⁸¹, Clay Corvin⁴⁰, Curtis Crawford¹², James A. Crittenden⁴⁰, Hamid Dabiri Khah⁴¹, Olivier Dadoum¹⁷, Chris Damerell Mictiael Danilov²², Ken P. Davies⁶, Antonio de Lim⁴⁰, Stefano De Santis⁴⁰ Mithiget Daminov²², Fen P. Davins⁶, Antonio de Lina⁶⁰, Redmo De Santis⁶⁰, Laurence Dipace¹⁰, Jang-Pierre Delahayo¹¹, Nichala Delerm³⁰, Olivie Delferriter Yu. N. Dening¹⁰, Christopher J. Densham¹, Guillianne Devant², Amos Dexter²², Smithr Divid¹⁰, Baght Dollan⁴⁰, Gereg Donaud⁴¹, Robert Donlin⁴⁷, Eric Doph⁴⁰ Alesandro-Denyo¹⁰, Alex Deng⁴⁷, Alexandr Droublin²¹, Gerald Dugun¹⁵, Vikiot Deginov²¹, Holen Edwand⁴⁷, Histio Enrichmann²⁸, Michael Ehrichmann²⁸, Poder Eliasson¹¹, George Elbasod⁴⁷, Erkhand Ehern¹⁸, Louis Emery²², Karahiro Emu Kuniver Diode¹⁴, Anosh Denue²⁴, Erkhand Ehern¹⁸, Louis Emery²², Karahiro Emu Kuninori Endo²⁴, Atsushi Enomoto²⁴, Fahien Eozénou⁸, Roger Erickson⁶⁰, Karen Fant⁶ Alberto Fasso⁹⁹, John Fehlberg⁵⁴, John Ferguson¹¹, J. Luis Fernandoz-Hernando¹² Ted Fieguth⁶⁰, Mike D. Fitton⁷, Mike Foley²¹, Richard Ford²¹, Brian Foster⁸ Horst Friedaam², Josef Frisch⁶⁰, Joel Faerst², Masafumi Pakuda²⁴, Shigeki Pakuda²⁴ Yoshisato Funshashi²⁴, Warren Funk⁴², Kazuro Parukawa²⁴, Funio Furuta² Karsten Gadow¹⁸, Wei Gai², Fred Gannaway⁸¹, Jie Gao³¹, Peter Garbincius² Luis Garcia-Tabaros¹⁰, Terry Garvey³⁷, Edward Garwin⁶⁰, Martin Gastal¹¹, Linin Ge⁶⁰ Zheqiao Geng³¹, Scott Gerbick², Rod Gerig², Lawrence Gibbona¹³, Allan Gillespie⁷

ii ILC-Reference Design Report

The RDR is not a full engineering design - it is conceptual; some aspects require R&D. Forms reliable basis for detailed engineering design & costing.

B. Foster - Lomonosov 08/07

Overall Layout

1st Stage: 500 GeV; central DR et al. campus; 2 "push-pull" detectors in 14 mrad IR.

ilc.

DR Issues

- Injection/extraction kickers
- Instabilities

- Electron-cloud, Fast Ion, ...
- Dynamic aperture
- Tuning for low emittance

Task Force been established for DR R&D

- Defining work packages
- Available machines
 - KEK-ATF
 - KEKB, CESR, HERA

ilr iic

Kicker System

- Number of bunches 3000 (6000 desirable)
- 300ns interval in linac \Rightarrow total length ${\sim}1\text{ms}$ \rightarrow 300km
- Store compactly in DR (circumference 20km \rightarrow bunch interval \sim 20ns, 6km \rightarrow \sim 6ns)
- Bunch by bunch extraction at 300ns interval (injection, too)

- Secondary electrons attracted by positron beam causes an instability
- Max. of Secondary Electron Yield (SEY) should be <
 1.1
 Secondary Electron Yield of TiZrV NEG, measurement at 30
 2
 A measurement at 30
- Possible cures
 - Coating with NEG
 - Solenoids in free field region
 - Grooves on chamber
 - wall
 - Clearing electrode

• Confident enough to baseline single e+ DR

ilr

İİĹ

Cavities

- Baseline: TESLA-type 1.3 GHz
 - Identical to XFEL cavities
 - Only beamtubes shortened
- Accelerating gradient
 - Vertical test

İİL

- >35 MV/m, Q>0.8x10¹⁰
- Average gradient in cryomodule
 - 31.5 MV/m, Q>1x10¹⁰
- With the presently available technology
 - average gradient lower than 31.5 MV/m
 - spread of gradient large
 - if no improvement,
 uniform distribution in
 22<G<34 MV/m, average 28 MV/m:

=> Cost increase ~7 %

ic

- Intermediate goal
 - Achieve 31.5 MV/m average operational accelerating gradient in a single cryomodule as a proof-of-principle. In case of cavities performing below the average, this could be achieved by tweaking the RF distribution accordingly.
 - Auxiliary systems like fast tuners should all work.
- Final goal
 - Achieve > 31.5 MeV/m operational gradient in 3 cryomodules.
 - The cavities accepted in the low power test should achieve 35 MV/m at $Q_0 = 10^{10}$ with a yield as described above (80% after first test, 95% after re-preparation).
 - It does not need to be the final cryomodule design

S1 RF Performance: Compare Acceptance Test with Module Operational Accelerating Gradient

;ir iic

XFEL synergy: Module Test @ DESY

- High gradient modules have been assembled
 - For installation in FLASH
- Test in dedicated test stand possible e.g.
 - Cavity performance
 - Thermal cycles
 - Heat loads
 - Coupler conditioning
 - Fast tuner performance
 - (LLRF tests)
- Part of the ongoing preparation work for XFEL

;Ir ILC COST İİL Summary **RDR "Value" Costs Total Value Cost (FY07)** 4.80 B ILC Units Shared **1.82 B Units Site Specific 14.1 K person-years** ("explicit" labor = 24.0 M person-hrs @ 1,700 hrs/yr)

1 ILC Unit = \$ 1 (2007)

Value = 6.62 B ILC Units

The reference design was "frozen" on 1-12-06 for RDR production, including costs.

Important to realise this is a snapshot; design will continue to evolve, due to R&D, accelerator studies & value engineering.

The value costs have already been reviewed many times; all reviews have been very positive and generally consider there is scope for further cost reductions.

The future programme

"Completing the R&D and engineering design, negotiating an international structure, selecting a site, obtaining firm financial commitments, and building a machine could take us well into the mid-2020s, if not later,"

- It's the GDE's job to go as fast as possible to put
 Dr Orbach on the spot "technically driven timeline"
 - Construction proposal in 2010
 - Construction start in 2012
 - Construction complete in 2019
- What do we need to do to achieve our timeline?

Engineering Design Phase

- ILC Engineering Design
 - We have a solid design concept in the reference design, but it is immature and needs engineering designs, value engineering, supporting R&D and industrialization.
- GDE will be reorganized around a Project Management Office to reach this goal
 - M. Ross, N. Walker and A Yamamoto PM "Troika" + high level engineering managers in the project office
 - Central management will have authority to set priorities and direct the work
 - Resources for the engineering design and associated R&D appears feasible
 - Investments toward Industrialization and siting

2010 was foreseen as the time at which LHC results, CLIC progress etc would be reviewed and decision on ILC construction made. <u>GDE committed to be ready at that time!</u>

Civil Construction Timeline

B. Foster - Lomonosov 08/07

R&D Task Forces

- The Task Forces were put together successively over a period of five months:
 - **S0/S1 Cavities, Cryomodule**
 - S2 Cryomodule String Tests
 - S3 Damping Rings
 - S4 Beam Delivery System
 - S5 Positron Source
 - S6 Controls, not yet active
 - S7 RF
- The industrialisation in Europe dominated by the preparatory work for XFEL.

String test - goal

 Build 1 RF unit (3 cryomodules + 1 Klystron) fully to check:

- What gradient spread can be handled by LLRF system. This test should be done with and without beam loading, etc.
- Partial check of:
 - Reliability
 - Dark current
 - for degradation or other weaknesses
- The ILC cryomodule is different enough compared to TTF that a new system test is prudent.

Assemble detectors on surface

CMS assembly approach:

- Assembled on the surface in parallel with underground work
- Allows pre-commissioning before lowering
- Lowering using dedicated heavy lifting equipment
- Potential for big time saving
- Reduces size of required underground hall

B. Foster - Lomonosov 08/07

European situation

• FP7 calls:

ilr

Ìİ.

- "Preparatory phase" is intended for projects on the ESFRI Road map; scheme is meant to take mature projects over the final threshold to construction. ILC is eligible since it is on the European particle physics roadmap, which was assimilated into the ESFRI roadmap. The EU Commission ruled that only 2 projects were sufficiently advanced to be eligible for PP funding: the LHC upgrade, and ILC. Call last May; result received this month.
- Excellent reviews and award of 5 Meuro cf
 7 Meuro requested MUCH better than pro rata per project.

European situation

Goals:

<u>ilr</u>

Ìİİ.

- "Political": prepare sites within Europe (including Russia) and explore with governments mechanisms for site proposal and selection; develop models for governance of an ILC laboratory - FALC Chair is a member of collaboration; develop outreach materials and strategies in many EU languages.
- "Technical": make 30 cavities integrated into ILC R&D programme; close interaction and synergy with XFEL facilities to build and test high-performance cavities and modules and to develop EU industrial capacity to produce substantial fraction of the ILC SC modules.

Summary and Outlook

- RDR Draft & costing published in February 2007
- Final RDR now published and presented to ILCSC this month
 - represents enormous effort over last 18 months.
- Many R&D and engineering design issues still remain.
 The next document will contain much more technical detail: Engineering Design Report due 2010.
- Our job in the GDE is two-fold:

produce the EDR, a blueprint for ILC construction containing and hopefully reducing cost so that governments have to act.
mount political and scientific campaign to convince them and the general public that the ILC is a good investment.

We all had better do a good job -

the future health of world HEP depends on it.