STERILE NEUTRINOS From cosmology to the LHC

The vMSM model

- T. Asaka and M. Shaposhnikov Phys.Lett.B620(2005)17
- M.Shaposhnokov Nucl.Phys.B763(2007)49
- Minimum extension of the SM to accomodate massive neutrinos
- See-saw formula for active neutrinos $m_v = -M^D(1/M_I)(M^D)^T$
 - Majorana mass M_I
 - Dirac mass M_D =fv v=174 GeV vac exp val of Higgs field
- Usual choice: f as in quark sector, $M = 10^{10}-10^{15} \text{ GeV}$
- Alternative choice: small f
- Inputs: $m(v_1) = 10^{-5} \text{ eV}$, $m(v_2) = 9 \text{ meV}$, $m(v_3) = 50 \text{ meV}$ and mixings

Three sterile neutrinos

- Three singlet RH neutrinos $N_1 N_2 N_3$
- N_1 with very large lifetime, $almost \ stable \Rightarrow DARK \ MATTER$
- Best : $m(N_1) \sim 10 \text{ keV}$
- Warm dark matter
- N₂, N₃ almost degenerate (leptogenesis)
- With masses 100 MeV-few GeV

Subdominant radiative decay channel: $N \rightarrow \nu \gamma$. Photon energy:

 $E_{\gamma}=rac{M_s}{2}$

Radiative decay width:

 $\Gamma_{
m rad} = rac{9 \, lpha_{
m EM} \, G_F^2}{256 \cdot 4 \pi^4} \, \sin^2(2 heta) \, M_s^5$

Limits from cosmology

Search for N₁ radiative decays

Big Bang nucleosynthesis, N_2 , N_3 $U^2 < 10^{-8} (1/m(GeV))^2$

Production of heavy neutrinos

- Mixed with active neutrinos
- In all weak decays they appear at level U^2_{NI}
 - Change of kinematics

Decays of heavy neutrinos

Purely weak decays:

modes depend on the mass $e^+e^-\nu$, $\mu e\nu$, $\mu^+\mu^-\nu$, $e^-\pi^+$, $\mu^-\pi^+$ Lifetime for $e^+e^-\nu$ $\tau = 2.8 \ 10^4 \ (1/m(MeV)^5)(1/U^2)$

PS191 experiment

Mixing to the v_{τ}

•With the NOMAD experiment, 450 GeV p •Source $D_s \Rightarrow \tau v_{\tau}$

Possible improvements

- Modern v beams NuMI, T2K
- 120 GeV, 5 10²⁰ pots
 - Large π , K production and also D mesons
 - $\Rightarrow improvement in U^2 limits$
 - Furthermore, mass range can be extended to 1.3 GeV

What about the LHC?

- LHCb
- 10¹² B mesons/year of 100 GeV/c
 Mass region extended to 4 GeV
- ATLAS/CMS
- 3 10⁸ W/year

Mass region extended to 50 GeV

Rough expectations

Conclusion

- The vMSM is an appealing model
- It is possible to test it rather simply in the laboratory: NuMI, LHC
- An add-on decay volume in the near hall of NuMI could give valuable limits (or find sterile neutrinos!)