

13th Lomonosov Conference Moscow, 23-29 August 2007

The MARE experiment: calorimetric approach for the direct measurement of the neutrino mass

Erica Andreotti

University of Insubria & INFN – Milano Bicocca

on behalf of the MARE collaboration

Summary

The physical context

- Basic concepts & experimental requirements for the direct measurement of m_v
- Spectrometers versus Calorimeters
- Re-based µcalorimeters: basic concepts & state-of-the-art (special care to MIBETA & semiconductor thermistors)
- > The MARE project: aims, potentiality & experimental requirements

Moscow, August 2007

Experimental requirements

High statistics at the end-point

 $F(\delta E) \sim 2 \left[\frac{\delta E}{E_0} \right]^3$ Low E_0 required!

> High energy resolution \Rightarrow a tiny spectral distortion must be observed

- > Approximate evaluation of sensitivity to m_v $\sigma(M_v) \cong \sqrt[4]{\frac{1.6 E_0^3 \Delta E}{A T_M}}$ High energy resolution High energy resolution High energy resolution High statistics
- ➤ Small & well known systematic effects ⇒ they could distort the spectral shape
- unaccounted background gives negative $m(v_e)^2$
- response of the detector (i.e. energy resolution)
- problem of excited final state
- pile-up effects

At least two different & complementary approaches required!

Moscow, August 2007

Re-based µcalorimeters

Bolometric detectors of particles: basic concepts

Moscow, August 2007

Thermistors technology & precursors experiments

MIBETA Milan/Como 2000-03 AgReO₄

 $(M_{v}) < 15 \text{ eV} (90\% \text{ C.L.})$

MANU Genoa 1995-99 Metallic Re

 $\langle M_{v} \rangle < 19 \text{ eV} (90\% \text{ C.L.})$

Thermometer:

Resistive element with heavy dependence of the resistance on the temperature CRITICAL PARAMETERS: τ_r and Signal/Noise

Specific know-how developed on semiconductor K thermistor technology

Variable Range Hopping (VRH) conduction regime: exponential increase of R with decreasing T

Moscow, August 2007

Wisconsin-NASA

μcalorimeter arrays for application to X-ray astronomy Specific know-how developed on transition edge sensors (TES)

Superconducting film (~10² nm) deposited on the absorber kept at the transition edge $T_c \rightarrow$ resistivity changes rapidly with temperature fluctuation

Precursors experiments: MANU (Genoa 1995-99)

- Metallic Re single crystal → ONE detector only
- mass 1.6 mg \rightarrow Activity A_B = 1.6 Hz
- thermometer: Ge NTD thermistor (VRH), size = 0.1 x 0.1 x 0.23 mm³
- live time: 0.5 year
- ΔE_{FWHM} = 96 eV
- τ_r ~ 200 μs

Total collected statistics: $6 \times 10^6 \beta$ decays of ¹⁸⁷Re above 420 eV

$$E_{0} = 2470 \pm 1_{stat} \pm 4_{sys} eV$$

$$\tau_{1/2} = 41.2 \pm 0.2_{stat} \pm 1.1_{sys} Gyr$$

$$m_{\overline{v}_{e}}^{2} = -462 \pm 579_{stat} \pm 679_{sys} (eV)^{2} / c^{4}$$

$$m_{\overline{v}_e} \leq 19.0 eV / c^2 (90\% c.l.)$$

Future improvements based on new technology thermistors: transition edge sensors (TES)

Moscow, August 2007

Precursors experiments: MIBETA

(Milan-Como 2000-03)

- AgReO₄ single crystals \rightarrow ¹⁸⁷Re activity \simeq 0.54 Hz/mg
- Mass \cong 0.25 mg \rightarrow A_{β} \cong 0.13 Hz
 - → to limit pile-up
- Array of 10 detectors
 - └→ to increase statistics
- Phonon sensor: Si-implanted thermistors (ITC-irst)
 - → high sensitivity high reproducibility ⇒ arrays possibility of µ-machining

Technologies available for simultaneous fabrication of a large number, small dimension thermistors with fully integrated electrical connections

Reduced microphonism and problems of assembly

Useful for future expansion of arrays

X-ray calibration source

BOTTOM

AgReO₄ crystal

Al bonding wires \emptyset 17 μ m

thermistor

600×600 μm²

AgReO₄ crystal

AI bonding wires

mm

Si thermistor

TOP

heat sink

epoxy joint

Moscow, August 2007

Moscow, August 2007

Results of MIBETA

Moscow, August 2007

The future

- increase the number of events
- * decrease pile-up, by decreasing τ_r
- improve energy resolution

The MARE collaboration

MARE I

GOALS

1. Reach 2 eV sensitivity:

- Present technology detectors
- Single channel optimization
- Scaling up to hundreds devices
 - $\Delta E = 10 \text{ eV}, \tau_r = 150 \ \mu s$
 - $A_{\beta} = 0.3 \text{ Hz}, f_{pp} = 3 \times 10^{-5}$
 - ~ 300 detectors array

Total statistics ~ 10¹⁰ events

- 2. Improve understanding on systematics
- Theoretical spectral shape of decay
- Detector response function
- Unidentified pile-up
- Data reduction

• ...

Data taking for MARE I is starting now (summer 2007)

3. R&D for MARE II

MONTECARLO simulations MAREI

Montecarlo input parameters			90% CL sensitivity	Possible experimental configurations			
N _{ev} [×10 ⁹]	f _{pile-up} [×10 ⁻⁵]	∆E [eV]	<i>т</i> , [eV]	N _{det}	4м [у]	〈A _β 〉 [dec/s]	⟨∆≀⟩ [μs]
1.4	2.0	10	3.5	100	2	0.20	100
3.2	2.5	10	3.0	200	2	0.25	100
4.7	2.5	10	2.5	200	3	0.25	100

Moscow, August 2007

MARE I: thermistors

 $A_{\beta} \sim 0.3 \text{ Hz} \rightarrow \text{doubling absorber mass while preserving } \Delta E \text{ and } \tau_r \rightarrow 0.3 \text{ Hz}$

Detectors require some improvements!

MIBETA2: available technologies

Arrays of 10 elements Sensor area 800×800 μm²

ITC-irst micromachined array. Si-implanted produced by improving the technology developed for MIBETA. Status: ongoing production & tests

NASA/GSFC 6x6 silicon array. Status: encouraging first results. Coupling and electronics to be optimized. Nb electrical contact

NTD

300×200×25 µm³

SiN thermal link

LBL+Bonn NTD Ge array. Status: excess noise observed; reproducibility to be demostrated.

MANU2:

Transition Edge Sensor (TES) Instead of NTD thermistors » faster risetime and better S/N

Moscow, August 2007

Erica Andreotti

17

MIBETA 2: previous tests

Array of 288 elements achieved through a gradual approach

Single channel:

- AgReO₄ + semiconductor thermistor
- single crystal mass ~ 0.45 mg \rightarrow A_B ~ 0.3 Hz

NASA/GSFC XRS2: 6×6 Si-implanted array

single pixel

Si-thermistor

Si thermal links 3µm

Already tested at ≠ temperatures with glued crystals (in Milan)

18

Single channel best performances:

Further improvements attainable thanks to the new developed cold electronics (JFETs)

Moscow, August 2007

MIBETA 2: schedule & sensitivity

Gradual deployment of the whole 288 elements array:

year	1	2	3	4	5
new detectors	72	72	144	0	0
total detectors	72	144	288	288	288
statistics [det*y]	72	216	504	792	1080

 Array design based on XRS2 array
 Possible alternatives based on different (previously mentioned) thermistors

Two approaches to evaluate the sensitivity:

- conservative:
 ΔE = 40 eV & τ_r ~ 400 μs
- *improved:* ΔE = 15 eV & τ_r ~ 50 μs

MARE II

GOAL

reach 0.2 eV sensitivity around 2015

Requirements (from MonteCarlo simulations)

Total statistics ~ 10^{14} events $\tau_r \sim 1 - 10 \ \mu s$ Activity/element ~ 1-10 Hz $\Delta E_{FWHM} \sim 5 \ eV$

Data taking should start not later than 2011!

Kick-off of MARE II subordinated to:

- safe reduction of known sources of systematics;
- verification that no new sources appear;
- complete understanding of the ¹⁸⁷Re decay spectrum;
- demonstration that the estimated sensitivity can be maintained through the experiment segmentation & expansion

Substancial improvements are needed:

- sensors: TES or MMC or MKID
- electronics: multiplexed SQUID
- methods: modularity
- → scaling up to thousands devices!
 - Technologies already under study in several other experiments

The full **MARE phase I** dataset is required to drawn a definitive conclusion.

Moscow, August 2007

MARE II

Thermometer: a rise time of $\sim 1 - 10 \ \mu s$ is required

higher statistics with lower pile-up

Multiplexed kinetic inductance detectors (MKIDS) (Roma, ITC-irst, Cardiff)

Superconductive strip below T_c whose surface inductance L_s and impedance Z_s are changed by absorption of quasi particles; the signal is read as a phase variation when the strip is part of a resonant circuit Magnetic MicroCalorimeters (MMC) (Heidelberg) Paramagnetic material in a small magnetic field with temperature dipendent magnetization

Transition Edge Sensors (TES) (MANU 2)

Already mensioned

Temperature sensitivity ~ 60 times larger than for doped semiconductor thermistors Metallic \rightarrow e-ph coupling time shorter than for doped semiconductors

Electronics: front-end multiplexed SQUID

Very good noise performance allows construction of multiplexers that read out a number of sensors on a single channel; couples very well to TES, MMC, MKIDs

(NIST, PTB)

Moscow, August 2007

MARE II

Approach: design a kind of modular 10000 pixel array kit which can be relatively easily installed in any available refrigerator

Simulations MARE II

Moscow, August 2007

Conclusions

The calorimetric technique can reach sub-eV sensitivity on m_v being complementary to KATRIN

The MARE experiment will be developed into 2 phases:

Thanks!

- MARE I: important to understand all sources of systematics by implementing the specific know-how developed by the involved groups
 MARE II: new technology thermistors & read-out are needed to achieve the experimental requirements
- Thanks to the modularity of the calorimetric approach a further expansion of the experiment will simply consist in the repeated replication of the first matrix (unlike spectrometers)

