DOUBLE BETA DECAY: PRESENT STATUS

Б1

A.S. BARABASH, ITEP (Moscow)

1

-	<u> </u>	
1 ° 100		
	~ ~ ~ ~	
~~ .		
	-	

Б1 Барабаш; 15.07.2005

I. Introduction

NEUTRINOLESS DOUBLE BETA DECAY

Oscillation experiments \Rightarrow **Neutrino is massive!!!**

□ However, the oscillatory experiments cannot solve the problem of the origin of neutrino mass (Dirac or Majorana?) and cannot provide information about the absolute value of mass (because the Δm² is measured).

This information can be obtained in 2β-decay experiments.

$$\langle m_v \rangle = |\Sigma| Uej |2| e^{i\phi_j} m_j|$$

Thus searches for double beta decay are sensitive not only to masses but also to mixing elements and phases ϕj .

What one can extract from 2β -decay experiments? \Rightarrow

- Nature of neutrino mass (Dirac or Majorana?).
- Absolute mass scale (value or limit on m₁).
- Type of hierarchy (normal, inverted, quasi-degenerated).
- **CP** violation in the lepton sector.

Neutrinoless double beta decay is being actively searched, because it is closely related to many fundamental concepts of nuclear and particle physics:

- the lepton number nonconservation;
 - the existence of neutrino mass and its origin (Dirac or Majorana?);
 - the presence of right-handed currents in electroweak interactions;
 - the existence of Majoron;
 - the structure of Higg's sector;
 - the supersymmetry;

- the heavy sterile neutrino;
- the existence of leptoquarks.

DBD and neutrino mass hierarchy

8

Best present limits on \langle m_v \rangle

Nuclei	T _{1/2} , y	<m<sub>v>, eV QRPA [MEDEX07]</m<sub>	<m<sub>v>, eV [SM]</m<sub>	Experiment
⁷⁶ Ge	>1.9·10 ²⁵	< 0.22-0.41	< 0.69	НМ
	≈1.2·10 ²⁵ (?)	≈ 0.28-0.52(?)	≈ 0.87(?)	Part of HM'04
	≈2.2 [.] 10 ²⁵ (?)	≈ 0.21-0.38(?)	≈ 0.64(?)	Part of HM'06
	>1.6·10 ²⁵	<0.24-0.44	<0.75	IGEX
¹³⁰ Te	> 3.0 ·10 ²⁴	< 0.34-0.57	< 1.08	CUORICINO
¹⁰⁰ Mo	> 5.8 ·10 ²³	< 0.81-1.28	-	NEMO
¹³⁶ Xe	>4.5·10 ²³	< 1.41-2.67	< 3.02	DAMA
⁸² Se	> 2.1 ·10 ²³	< 1.40-2.17	< 4.47	NEMO
¹¹⁶ Cd	>1.7·10 ²³	< 1.45-2.76	< 3.76	SOLOTVINO
			•	9

SM: E. Caurier, F. Nowacki, A. Poves, Int.J.Mod.Phys. E16 (2007) 552

A Recent Claim

Klapdor-Kleingrothaus H V, Krivosheina I V, Dietz A and Chkvorets O, *Phys. Lett.* B **586** 198 (2004).

Used five ⁷⁶Ge crystals, with a total of 10.96 kg of mass, and 71 kg-years of data $\tau_{1/2} = 1.2 \times 10^{25} \text{ y}$ (4.2 σ) 0.24 < m_v < 0.58 eV (± 3 sigma) (NME from Eur. Lett. 13(1990)31)

There are some problems with this result:

- 1) Only one measurement.
- 2) Only ~4 σ level (independent analysis gives ~ 2.7 σ).
- 3) In contradiction with HM'01 and IGEX.
- 4) Moscow part of Collaboration: **NO EVIDENCE**.
- 5) ²¹⁴Bi peaks are overestimated.
- 6) "Total" and "analyzed" spectra are not the same.

"2β community": very conservative reaction

In any case new experiments are needed, which will confirm (or reject) this result

Mod.Phys.Lett. A21(2006)1547

Old data, new pulse shape anal. $\tau_{1/2} = 2.23^{+0.44}_{-0.31} \times 10^{25} \text{ y}$ (6 σ) $m_v = 0.32 \pm 0.03 \text{ eV}$ $n = 11\pm1.8 \text{ events} \Rightarrow$ where is a statistical error?! non-correct peak position?!

Two neutrino double beta decay

- Second order of weak interaction
- \Box Direct measurement of NME values! \Rightarrow
 - The only possibility to check the quality of NME calculations!!!
 - g_{pp} (QRPA parameter \Rightarrow NME(0_V)!
- This is why it is very important to measure this type of decay for many nuclei, for different processes (2β⁻, 2β⁺, Kβ⁺, 2K, excited states) and with high accuracy.

Two neutrino double beta decay

By present time $2\beta(2\nu)$ decay was detected in **10** nuclei:

⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ⁹⁶Zr, ¹⁰⁰Mo, ¹¹⁶Cd, ¹²⁸Te, ¹³⁰Te, ¹⁵⁰Nd, ²³⁸U

For ¹⁰⁰Mo and ¹⁵⁰Nd $2\beta(2\nu)$ transition to 0⁺ excited state was detected too

Main goal is: precise investigation of this decay

Recommended values for half-lives:

- ⁴⁸Ca (4.2 ^{+2.1}_{-1.0})·10¹⁹ y
- 76 Ge (1.5 ± 0.1)·10²¹ y
- ⁸²Se − (0.92± 0.07)·10²⁰ y
- ${}^{96}Zr (2.0 \pm 0.3) \cdot 10^{19} y$
- ${}^{100}Mo (7.1 \pm 0.4) \cdot 10^{18} y$
- ¹⁰⁰Mo − ¹⁰⁰Ru (0⁺₁) − (6.2^{+0.9}_{-0 7})·10²⁰ y
- ${}^{116}Cd (3.0 \pm 0.2) \cdot 10^{19} y$
- 130 Ba(____) (2.2 ± 0.5)·10²¹ y

ECEC(2v):

- 238 U(rad) (2.0 \pm 0.6)·10²¹ y
- ¹⁵⁰Nd − ¹⁵⁰Sm (0⁺₁) − (1.4^{+0.5}_{-0.4})·10²⁰ y
- ¹⁵⁰Nd (7.8± 0.7)·10¹⁸ y
- $^{130}\text{Te}(\text{geo}) (0.9 \pm 0.1) \cdot 10^{21} \text{ y}$
- ¹²⁸Te(geo) (2.5 ± 0.3)·10²⁴ y

II. CURRENT EXPERIMENTS

□ NEMO-3 and CUORICINO

Others (TGV, Baksan, DAMA, COBRA, ITEP-TPC, excited states,...)

Cuoricino

11 modules 4 detectors each Dimension: 5x5x5 cm³ Mass: 790 g

Total mass 40.7 kg (~11 kg of ¹³⁰Te)

2 modules 9 detectors each, Dimension: 3x3x6 cm³ Mass: 330 g

Cuoricino result on ¹³⁰Te ββ0ν decay

Anticoincidence background spectrum the bb-0n region

$$\tau_{1/2}^{0\nu} \ge 3.0 \cdot 10^{24} \, y \, (90\% \, CL)$$

$$\left\langle m_{V}^{}\right\rangle \leq 0.34 - 1.08 \ eV \quad (90\% \ CL)$$

(NME: MEDEX07 + SM07)

CUORICINO sensitivity

□ In **3** y running time:

 $T_{1/2} > 5.2 \cdot 10^{24} y$

 $< m_v > < 0.2-0.6 \text{ eV}$

The NEMO3 detector

Fréjus Underground Laboratory : 4800 m.w.e.

<u>Source</u>: 10 kg of $\beta\beta$ isotopes cylindrical, S = 20 m², 60 mg/cm²

Tracking detector:

drift wire chamber operating in Geiger mode (6180 cells) Gas: He + 4% ethyl alcohol + 1% Ar + 0.1% H₂O

<u>Calorimeter</u>: 1940 plastic scintillators coupled to low radioactivity PMTs

Magnetic field: 25 Gauss Gamma shield: Pure Iron (18 cm) Neutron shield: borated water (~30 cm) + Wood (Top/Bottom/Gapes between water tanks)

Able to identify e^- , e^+ , γ and α

ββ decay isotopes in NEMO-3 detector

19

ββ events selection in NEMO-3

Typical ββ2ν event observed from ¹⁰⁰Mo

¹⁰⁰Mo $2\beta 2\nu$ preliminary results

(Data Feb. 2003 – Dec. 2004)

$\beta\beta2\nu$ results with other nuclei

NEMO-3 is 2 β (2 ν)-decay factory!!!

¹³⁰Te (preliminary)

534 days, 454 g of ¹³⁰Te

background subtracted

Other interesting results with NEMO-3 (using information obtained with 2v-decay of ¹⁰⁰Mo)

- SSD mechanism is confirmed for 2v decay of ¹⁰⁰Mo [Phys.At.Nucl. 69(2006) 2090]
 "Bosonic" properties of neutrino is
 - checked:
 - pure "bosonic" neutrinos are excluded;
 - conservative upper limit sin²χ <0.6 is obtained
 (hep-ph/0704.2944)

$\beta\beta0\nu$ search

Collaboration decided to perform blind analysis with mock data
 Plan to open the box and update the results ~ summer 2008
 And once again at the end of the experiment ~ early 2010.

Decay with Majoron emission

NEMO-3 results

	n=1 *	n=2 *	n=3 *	n=7 *
¹⁰⁰ Mo	> 2.7·10²² g<(0.4-1.8)·10 ⁻⁴	>1.7.10 ²²	>1.0.10 ²²	>7·10 ¹⁹
⁸² Se	> 1.5·10²² g<(0.7-1.9)·10 ⁻⁴	>6.0·10 ²¹	>3.1.10 ²¹	>5.0·10 ²⁰

^{*} R.Arnold et al. Nucl. Phys. A765 (2006) 483

III. FUTURE EXPERIMENTS

Main goal is:

- To reach a sensitivity ~ **0.01-0.1 eV** to <m_v> (inverted hierarchy region)
- Strategy is:
 - to investigate different isotopes (>2-3);
 - to use different experimental
 - technique

Here I have selected a few propositions which I believe will be realized in the nearest future (~5-10 years)

- CUORE (¹³⁰Te, cryogenic thermal detector)
- □ GERDA (⁷⁶Ge, HPGe detector)
- □ MAJORANA (⁷⁶Ge, HPGe detector)
- **EXO** (**130Xe**, TPC + Ba⁺)
- SuperNEMO (⁸²Se or ¹⁵⁰Nd, tracking detector)

Other proposals: MOON, SNO++, CANDLES, COBRA, XMASS, DCBA₂₂₈.

SUMMARY TABLE

(NME from MEDEX'07 and SM'07)

Experiment	nucleus	mass (kg	g) status	start	T _{1/2} (y)	<m<sub>v> eV</m<sub>	Location	Expected bkg (cts/keV/y/kg)
CUORE	¹³⁰ Te	200 ac	cepted + R&D	~2011 ~2011	2.1·10 ²⁶ 6.5·10 ²⁶	0.04-0.13 0.02-0.07	Gran Sasso Gran Sasso	0.01 0.001
GERDA	⁷⁶ Ge	40 ac 1000	ccepted + R&D	~2009 ~2011	2 10 ²⁶ 6·10 ²⁷	0.07-0.21 0.01-0.04	Gran Sasso	0.001 0.00025
MAJORANA	⁷⁶ Ge	60 1000	R&D R&D	~2009 ~2011	1.6·10 ²⁶ 6·10 ²⁷	0.08-0. 24 0.01-0.04	SNO	0.00025
ΕΧΟ	¹³⁶ Xe	200 acc 1000	epted + R&D	~2008 ~2011	6.4·10 ²⁵ 2·10 ²⁷	0.12-0.25 0.02-0.045	WIPP	0.0006 10 ⁻⁶
SuperNEMO	⁸² Se ~ ¹⁵⁰ Nd	100-200	R&D	~2011	2 10 ²⁶	0.04 –0.14	LSM, Can Franc	10-5
								29

IV. Conclusion

- 1. Significant advance has been made in the investigation of 2ν -decay.
- 2. Present conservative limit on $\langle m_v \rangle$ from $2\beta(0v)$ -decay experiments is $\sim 0.9 \text{ eV}$.
- 3. There is indication on "evidence" of 2β(0v)-decay in ⁷⁶Ge (<m_v> ≈ 0.5 eV). But it has to be confirmed (or rejected) in new experiments with ⁷⁶Ge (it will be done in a few years).
- 4. CUORICINO and NEMO-3 will reach a sensitivity to $\langle m_v \rangle$ on the level \sim (0.2-0.6) and (0.4-0.7) eV in \sim 2009-2010.
- 5. New generation of experiments will reach sensitivity to <m_v> on the level ~ (0.01-0.1) eV in ~ 2012-2015.

BACKUP SLIDES

 $Q_{\beta\beta} = 2529 \text{ keV}$ Natural isotopic abundance [¹³⁰Te] = 34.08% Therefore, isotopic enrichment is unnecessay

GERDA @ Gran Sasso: experimental concept

- HP Ge-diodes (86%⁷⁶Ge): **point-like** energy deposition at $Q_{\beta\beta}$ = 2039 keV
- Operation of bare Ge diodes in high-purity LN₂ or LAr shield (Heusser, Ann, Rev. Nucl. Part. Sci. 45 (1995) 543); proposals based on this idea: GENIUS (H.V. Klapdor-Kleingrothaus et. al., hep-ph/9910205 (1999)); GEM (Y.G. Zdesenko et al., J. Phys. G27 (2001))
- Baseline: LN₂; possible upgrade LAr: ρ=1.4 g/cm³, active anticoincidence with scintillation light from LAr

Phase I15 kg of 76Ge (HM and IGEX diodes)Phase II35 kg (if funded)Phase III~ 500 kg

GERDA: Baseline design

GERDA: Technical realization

Physics reach

A. Caldwell, KK, Phys. Rev. D 74 (2006) 092003

The Majorana ⁷⁶Ge 0vββ-Decay Experiment

- Based on Ge crystals
 - 180 kg 86% ⁷⁶Ge
 - Enriched via centrifugation
- Modules with 57 crystals each
 - Three modules for 180 kg
 - Eight modules for 500 kg!
- Maximal use of copper electroformed underground
- Background rejection methods
 - Granularity
 - Pulse Shape Discrimination
 - Single Site Time Correlation
 - Detector Segmentation
- Underground Lab
 - 6000 mwe
 - Class 1000

Conceptual Design of 57 Crystal Module

- Conventional vacuum cryostat made with electroformed Cu
- Three-crystal tower is a module within a module
- Allows simplified detector installation & maintenance
- Low mass of Cu and other structural materials per kg Ge

The Majorana Modular Approach

One concept: 57 crystal modules

Conventional vacuum cryostat made with electroformed Cu.

Three-crystal stack are individually removable.

The Majorana Shield - Conceptual Design

- Deep underground: >5000'
- Allows modular deployment, early operation
- Contains up to eight 57-crystal modules
- 40 cm bulk Pb, 10 cm ultra-low background shield
- Active 4π veto detector

Majorana Collaboration Current Status

Actively pursuing the development of R&D aimed at a ~1 ton scale ⁷⁶Ge neutrinoless $\beta\beta$ -decay experiment.

- Immediate thrust is to build a 60 kg prototype module to demonstrate backgrounds needed in a future experiment capable of reaching a sensitivity to the "inverted hierarchy" neutrino mass scale (30-40 meV).
- Using this prototype, expect to make a down-select between
 Majorana and GERDA technologies, picking the best method.
- Also exploring longer term R&D to minimize costs and optimize the schedule for a 1 ton experiment.

Our plan has been guided by advice from NuSAG, an independent external panel review (March 06), and a DOE $\beta\beta$ -decay Pre-conceptual design review panel (Nov. 06)

The Majorana Prototype Module (WIP)

- 60 kg module, ~60-100 crystals.
- Different designs and levels of enrichment
- \geq 4500 mwe
- Background Specification Goal in the 0vββ peared region of interest (4 keV at 2039 keV)

~ ≤1 count/ROI/t-y (after analysis cuts)

• Expected Sensitivity to $0\nu\beta\beta$ (for 60 kg enriched material, running 2 years, or 0.12 t-y of ⁷⁶Ge exposure)

 $T_{1/2} \ge 1.6 \text{ x } 10^{26} \text{ y } (90\% \text{ CL})$

Sensitivity to $<m_v> < 190 \text{ meV} (90\% \text{ CL})$ ([Rod06] RQRPA NME) Able to confirm/refute KKDC 400 meV value (20% measurement).

GERDA - Majorana

• 'Bare' enrGe array in liquid argon

- Shield: high-purity liquid Argon / H₂O
- Phase I (mid 2008): ~18 kg (HdM/IGEX diodes)
- Phase II (mid 2009): add ~20 kg new detectors Total ~40 kg

- Modules of ^{enr}Ge housed in high-purity electroformed copper cryostat
- Shield: electroformed copper / lead
- Initial phase: R&D prototype module
 Total 60 kg

Joint Cooperative Agreement:

Open exchange of knowledge & technologies (e.g. MaGe, R&D)
Intention to merge for 1 ton exp. Select best techniques developed and tested in GERDA and Majorana

EXO (Enriched Xenon Observatory) USA-RUSSIA-CANADA

□ $^{136}Xe \rightarrow ^{136}Ba^{++} + 2e^{-} (E_{2\beta} = 2.47)$ MeV)

Main idea is: to detect all products of the reaction with good enough energy and space resolution (M.Moe PRC 44(1991)931)

Tracking

concept: scale Gotthard experiment adding Ba tagging to suppress background (¹³⁶Xe ¹³⁶Ba +2e)

- single Ba detected by optical spectroscopy
- two options with 63% enriched Xe
 - High pressure Xe TPC LXe TPC + scintillation
- calorimetry + tracking
- expected bkg only by -2 energy resolution $_{\rm F} = 29_{2\rm S}$

LXe TPC

Present R&D

EXO

- Ba⁺ spectroscopy in HP Xe / Ba⁺ ex
- energy resolution in LXe (ion.+scint.)
- Prototype scale:
- ► 200 kg enriched L¹³⁶Xe without tag
- ► all EXO functionality except Ba id
- ► operate in WIPP for ~two years
- Protorype goals:
- ► Test all technical aspects of EXO (except Ba id)
- Measure 2v mode
- ► Set decent limit for 0v mode (probe Heidelberg- Moscow)

Full scale experiment at WIPP or **SNOLAB 10 t** (for LXe 3 m³) $b = 4 \times 10^{-3} \text{ c/keV/ton/y}$ 1.3×10²⁸ y in 5 years 1/2 0.013 ÷ 0.037 eV (m)

46

650 nm 493 nm metastable 47s

1 ton EXO

- Liquid (gas) Xe TPC + Ba⁺ tagging
- 1 ton of ¹³⁶Xe (80% enrichment)
- ΔE/E(FWHM) = 3.8% at 2.5 MeV (ionization and scintillation readout)
- Background (5 y) = 1 event
- Sensitivity (5 y): 2.10²⁷ y (<m_v > ~ 0.02-0.45 eV)

EXO-200 (without Ba+ tagging)

- 200 kg of ¹³⁶Xe (80% enrichment) exist!
- □ Location: WIPP (USA)
- □ ΔE/E(FWHM) = 3.8% at 2.5 MeV (ionization and scintillation readout)
- **D** Background (5 y) = 40 events
- Sensitivity (5 y): 6.4-10²⁵ y (<m_v > ~ 0.12-0.25 eV)
- □ Is under construction now (at Stanford)
- □ Start of measurements: in ~ 2007-2008

SuperNEMO preliminary design

Plane geometry

Source (40 mg/cm²) 12m², tracking volume (~3000 channels) and calorimeter (~1000 PM

Modular (~5 kg of enriched isotope/module)

100 kg: 20 modules ~ 60 000 channels for drift chamber ~ 20 000 PMT

Side view

Very preliminary design

50

From NEMO-3 to SuperNEMO

NEMO-3

SuperNEMO

7 kg 100 Mo T _{1/2} ($\beta\beta2\nu$) = 7. 10 ¹⁸ y	Mass of isotope	$100 \text{ kg }^{82}\text{Se}$ $T_{1/2}(\beta\beta 2\nu) = 10^{20} \text{ y}$
$T_{1/2}(\beta\beta0\nu) > 2.\ 10^{24} \text{ y}$ $< m_{\nu} > < 0.3 - 1.3 \text{ eV}$	Sensitivity	$T_{1/2}(\beta\beta0\nu) > 2.\ 10^{26} \text{ y}$ $< m_{\nu} > < 40 - 110 \text{ meV}$
FWHM ~ 12% at 3 MeV (dominated by calorimeter ~ 8%)	Energy resolution (FWHM of the ββ0ν ray)	FWHM ~ 6% at 3 MeV (dominated by source foil)
$\mathcal{E}(\beta\beta0\nu) = 8 \%$ poor energy resolution e ⁻ backscattering on scintillator	Efficiency	$\epsilon(\beta\beta0\nu) \sim 40\%$
${}^{214}{\rm Bi} < 300 \ \mu {\rm Bq/kg} \\ {}^{208}{\rm Tl} < 20 \ \mu {\rm Bq/kg} \\$	Internal contaminations in the source foils in ²⁰⁸ Tl and ²¹⁴ Bi	$^{214}{ m Bi}$ < 10 $\mu{ m Bq/kg}$ $^{208}{ m Tl}$ < 2 $\mu{ m Bq/kg}$
$\beta\beta 2\nu ~~ 2~cts~/~7~kg~/~y \label{eq:208Tl} (^{208}Tl,~^{214}Bi) \sim 0.5~cts/~7~kg~/y$	Background	$egin{aligned} & eta \beta \beta 2 \nu + (^{208} \mathrm{Tl},^{214} \mathrm{Bi}) \ & \leq 1 \ \mathrm{cts}/ \ 100 \ \mathrm{kg} \ /\mathrm{y} \ & 51 \end{aligned}$

Planning

✓ 2005 – 2007 : R&D program

✓ 2008: construction of the first SuperNEMO module with 5 kg 82 Se

✓ 2009-2011: construction and installation of the 20 modules \Rightarrow 100 kg of ⁸²Se start tacking data with delivered modules

✓ 2012: full SuperNEMO running with 100 kg of 82 Se

