ELECTRON ANGULAR CORRELATION IN NEUTRINOLESS DOUBLE BETA DECAY AND NEW PHYSICS

A. Ali (DESY), A. Borisov (MSU), D. Zhuridov (MSU)

> THIRTEENTH LOMONOSOV CONFERENCE ON Moscow, August 23-29, 2007 ELEMENTARY PARTICLE PHYSICS

Introduction

Neutrinos have non-zero masses and they mix with each other. It is largely anticipated that the neutrinos are Majorana particles.

• $0\nu 2\beta - \text{decay}$ $A(Z) \rightarrow A(Z+2) + 2e^{-p}$ A(Z) n A(Z+2)Lepton number is changed by 2 units. e^{-p}

Extended version of the SM could contain tiny nonrenormalizable terms that violate LN and allow $0\nu 2\beta$ decay.

10/25/2007

Probable mechanisms of LN violation may include exchanges by:
Majorana neutrinos
Scalar bilinears, e.g. doubly charged dileptons
SUSY Majorana particles
Leptoquarks
<u>Aright-handed W_R bosons etc.</u>

Two possible classes of mechanisms for the $0\nu 2\beta$ decay:

According to the Schechter-Valle theorem, any mechanism inducing the $0\nu2\beta$ decay produces an effective Majorana mass for the neutrino, which must therefore contribute to this decay.

Purpose: to examine the possibility to discriminate among the various possible mechanisms contributing to the $0\nu 2\beta$ decays using the information on the angular correlation of the final electrons.

Angular distribution

Most general Lorentz invariant effective Lagrangian for the long-range mechanism of $0\nu 2\beta$ decay:

$$L = \frac{G_F V_{ud}}{\sqrt{2}} \left\{ \left(U_{ei} + \epsilon_{V-A,i}^{V-A} \right) j_{V-A}^{\mu i} J_{V-A,\mu}^{+} + \sum_{\alpha,\beta} \epsilon_{\alpha i}^{\beta} j_{\beta}^{i} J_{\alpha}^{+} + \text{H.c.} \right\}$$

j & J are leptonic & hadronic currents of definite tensor structure
and chirality; $\alpha, \beta = \text{V} \pm \text{A}, \text{S} \pm \text{P}, \text{T}_{\text{L,R}}; U_{ei}$ is PMNS mixing matrix;
 $\epsilon_{\alpha i}^{\beta}$ encode new physics.

• My deriver so that is the interval of the set of the interval of the set of the set of the interval of the set of the

10/25/2007

Approximations:

- leading order in the Fermi constant
- leading contribution of the parameters ∈
- relativistic electrons and non-relativistic nucleons
- S_{1/2} and P_{1/2} waves for the outgoing electrons

Differential width on the $\cos\theta$ for 0^+ to 0^+ transitions:

$$\frac{d\Gamma}{d\cos\theta} = \frac{\ln 2}{2} \left| M_{GT} \right|^2 \mathcal{A}(1 - K\cos\theta), \quad K = \frac{\mathcal{B}}{\mathcal{A}},$$

where θ is the angle between the electron momenta in the rest frame of the parent nucleus, M_{{GT} is Gamov-Teller matrix element.

E	\mathcal{A}
\in^{V-A}_{V-A}	$\mathcal{A}_{0} + 4C_{1} \mu \mu_{V-A}^{V-A} c_{02} + 4C_{1} \mu_{V-A}^{V-A} ^{2}$
\in^{V-A}_{V+A}	$\mathcal{A}_{0} + 4C_{0} \mu \mu_{V+A}^{V-A} c_{01} + 4C_{1+} \mu_{V+A}^{V-A} ^{2}$
\in^{V+A}_{V-A}	$\mathcal{A}_{0} + C_{3} \mu \epsilon_{V-A}^{V+A} c_{2} + C_{5} \epsilon_{V-A}^{V+A} ^{2}$
\in^{V+A}_{V+A}	$\mathcal{A}_{0} + C_{2} \mu \epsilon_{V+A}^{V+A} c_{1} + C_{4} \epsilon_{V+A}^{V+A} ^{2}$
$\in \frac{S-P}{S-P}$	$\mathcal{A}_{0} + 4C_{0}^{SP} \mu \mu_{S-P}^{S-P} c_{04} + 4C_{1}^{SP} \mu_{S-P}^{S-P} ^{2}$
$\in \frac{S-P}{S+P}$	$\mathcal{A}_{0} + 4C_{0}^{SP} \mu \mu_{S+P}^{S-P} c_{03} + 4C_{1}^{SP} \mu_{S+P}^{S-P} ^{2}$
$\in \frac{S+P}{S-P}$	$\mathcal{A}_{0} + C_{2}^{SP} \left \mu \right \left \in_{S-P}^{S+P} \left c_{4} + C_{3}^{SP} \right \in_{S-P}^{S+P} \right ^{2}$
$\in \frac{S+P}{S+P}$	$\mathcal{A}_{0} + C_{2}^{SP} \left \mu \right \left \in_{S+P}^{S+P} \left c_{3} + C_{3}^{SP} \right \in_{S+P}^{S+P} \right ^{2}$
$\in_{T_L}^{T_L}$	$\mathcal{A}_{0} + 4C_{0}^{T} \mu \mu_{T_{L}}^{T_{L}} c_{06} + 4C_{1}^{T} \mu_{T_{L}}^{T_{L}} ^{2}$
$\overline{\in_{T_R}^{T_L}}, \in_{T_L}^{T_R}$	\mathcal{A}_0
$\in_{T_R}^{T_R}$	$\mathcal{A}_{0} + C_{2}^{T} \left \mu \right \left \in_{T_{R}}^{T_{R}} \left c_{5} + C_{3}^{T} \right \in_{T_{R}}^{T_{R}} \right ^{2}$

10/25/200

7

	E	B
	\in^{V-A}_{V-A}	$\mathcal{B}_{0} + 4D_{1} \left \mu \right \left \mu_{V-A}^{V-A} \right c_{02} + 4D_{1} \left \mu_{V-A}^{V-A} \right ^{2}$
	\in^{V-A}_{V+A}	$\mathcal{B}_{0} + 4D_{0} \mu \mu_{V+A}^{V-A} c_{01} + 4D_{1+} \mu_{V+A}^{V-A} ^{2}$
	\in^{V+A}_{V-A}	$\mathcal{B}_{0} + D_{3} \left \mu \right \left \epsilon_{V-A}^{V+A} \right c_{2} + D_{5} \left \epsilon_{V-A}^{V+A} \right ^{2}$
	\in^{V+A}_{V+A}	$\mathcal{B}_{0} + D_{2} \left \mu \right \left \in_{V+A}^{V+A} \left c_{1} + D_{4} \left \in_{V+A}^{V+A} \right ^{2} \right $
	$\in \frac{S-P}{S-P}$	$\mathcal{B}_{0} + 4 D_{1}^{SP} \left \mu_{S-P}^{S-P} \right ^{2}$
	$\in \frac{S-P}{S+P}$	${\cal B}_{0} + 4 D_{1}^{SP} \left \mu_{S+P}^{S-P} \right ^{2}$
	$\in \frac{S+P}{S-P}$	$\mathcal{B}_{0} + D_{2}^{SP} \left \mu \right \left \in_{S-P}^{S+P} \left c_{4} + D_{3}^{SP} \right \in_{S-P}^{S+P} \right ^{2}$
	$\in \frac{S+P}{S+P}$	$\mathcal{B}_{0} + D_{2}^{SP} \left \mu \right \left \in_{S+P}^{S+P} \left c_{3} + D_{3}^{SP} \right \in_{S+P}^{S+P} \right ^{2}$
	$\in_{T_L}^{T_L}$	$\mathcal{B}_0 + 4 D_1^T \left \mu_{T_L}^{T_L} \right ^2$
	$\in_{T_R}^{T_L}, \in_{T_L}^{T_R}$	${\cal B}_{_0}$
10/25/200	$\in_{T_R}^{T_R}$	$\mathcal{B}_{0} + D_{2}^{T} \left \mu \right \left \in_{T_{R}}^{T_{R}} \left c_{5} + D_{3}^{T} \right \in_{T_{R}}^{T_{R}} \right ^{2}$

In these tables:

$$\mu = \frac{\langle m \rangle}{m_e}, \quad \mu_{\alpha}^{\beta} = \frac{m_{\alpha}^{\beta}}{m_e}, \text{ with effective Majorana masses: } \langle m \rangle = \sum_i U_{ei}^2 m_i,$$
$$m_{S \mp P}^{S-P} = \sum_i U_{ei} \in_{S \mp P,i}^{S-P} m_i, \quad m_{V \mp A}^{V-A} = \sum_i U_{ei} \in_{V \mp A,i}^{V-A} m_i, \quad m_{T_{L,R}}^T = \sum_i U_{ei} \in_{T_{L,R},i}^{T_L} m_i;$$
$$c_i = \cos \psi_i, \text{ with the relative phases: } \psi_{01} = \arg(\langle \mu \rangle \mu_{V+A}^{V-A^*}), \psi_1 = \arg(\langle \mu \rangle \in_{V+A}^{V+A^*})...$$
$$\mathcal{A}_0 = C_1 |\mu|^2, \quad \mathcal{B}_0 = D_1 |\mu|^2.$$

The quantities C_i , $C_i^{(SP,T)}$, D_i and $D_i^{(SP,T)}$ are expressed through the intergated phase space factors A_{0k} , $A_{0k}^{(SP,T)}$, B_{0k} , $B_{0k}^{(SP,T)}$ and the combinations of nuclear parameters.

The expressions associated with the coefficients $\in_{V \neq A}^{V+A}$ confirm the results of Doi et al. (1985), while the expressions associated with the other coefficients \in_{α}^{β} transcend the earlier work.

10/25/2007

The integrated kinematic *A*- and *B*-factors [in 10^{-15} yr⁻¹] for the $0^+ \rightarrow 0^+$ transition of the $0\nu 2\beta$ decay of ⁷⁶Ge.

A_{01}	6.69	<i>B</i> ₀₁	5.45	A_{00}^{SP}	2.55	_	—
A_{02}	1.09×10	<i>B</i> ₀₂	8.95	A_{01}^{SP}	3.77	B_{01}^{SP}	2.73
A_{03}	3.76	B ₀₃	—	A_{02}^{SP}	1.18×10^{-1}	B_{02}^{SP}	7.20×10^{-2}
A ₀₄	1.30	<i>B</i> ₀₄	1.21	A_{03}^{SP}	1.27×10^{-3}	B_{03}^{SP}	3.71×10 ⁻⁴
A_{05}	2.08×10^{2}	<i>B</i> ₀₅	7.27	A_{01}^T	6.03×10	B_{01}^T	4.36×10
A_{06}	1.69×10^{3}	_	—	A_{02}^T	1.50×10^{3}	B_{02}^T	1.40×10^{3}
A_{07}	1.46×10^{5}	<i>B</i> ₀₇	7.72×10^4	A_{03}^T	7.67×10^{5}	B_{03}^T	7.16×10^{5}
A_{08}	6.59×10^{3}	<i>B</i> ₀₈	4.97×10^{3}				
A_{09}	4.15×10^{5}	B_{09}	3.00×10 ⁵				10

Analysis of the electron angular correlation

If the ``nonstandard" effects, are zero then $K = B_{01}/A_{01}$. Its values are given in the Table for various decaying nuclei of current experimental interest:

	⁷⁶ Ge	⁸² Se	100 Mo	¹³⁰ Te	¹³⁶ Xe
K	0.82	0.88	0.88	0.85	0.85

The presence of the ``nonstandard" parameters $\in_{V\mp A}^{V+A}$, $\in_{S\mp P}^{S+P}$, $\in_{T_R}^{T_L}$ or $\in_{T_L}^{T_R}$ does not change significantly the form of the angular correlation. The presence of the ``nonstandard" parameters $\in_{V\mp A}^{V+A}$, $\in_{S\mp P}^{S-P}$, $\in_{T_L}^{T_L}$ or $\in_{T_R}^{T_R}$ does change this correlation.

10/25/2007

The angular correlation coefficient *K* for various SM extensions for decays of 76 Ge.

10/25/2007

Particular cases for the parameter space

1.
$$|\langle \mathbf{m} \rangle| = 0$$
: $T_{1/2} = \ln 2/\Gamma = \left(|\mathbf{M}_{GT}|^2 \mathcal{A}\right)^{-1}$

For the lower bound $T_{1/2} > 1.2 \times 10^{25}$ yr the conservative upper bounds are:

$$\begin{vmatrix} \mu_{V-A}^{V-A} \\ 5.8(13) \times 10^{-7} \end{vmatrix} \begin{vmatrix} \mu_{V+A}^{V-A} \\ 6.1(7.5) \times 10^{-7} \end{vmatrix} \begin{vmatrix} \epsilon_{V-A}^{V+A} \\ 2.5(6.0) \times 10^{-11} \end{vmatrix} \begin{vmatrix} \epsilon_{V+A}^{V+A} \\ 9.3(28) \times 10^{-7} \end{vmatrix}$$

Constraints on the couplings of the effective LQ-quark-lepton interactions:

$$\left|\alpha_{I}^{(L)}\right| \le 5.8 \times 10^{-12} \left(\frac{M_{I}}{100 \text{ GeV}}\right)^{2}, \quad \left|\alpha_{I}^{(R)}\right| \le 3.0 \times 10^{-7} \left(\frac{M_{I}}{100 \text{ GeV}}\right)^{2}, \quad I = S, V$$

10/25/2007

T_{1/2} and *K* for the fixed values of the parameters $|\mu_{V\mp A}^{V-A}| = |\epsilon_{V+A}^{V+A}| = 5 \times 10^{-7}$, $|\epsilon_{V-A}^{V+A}| = 10^{-11}$ for decay of ⁷⁶Ge for the case of $|\langle m \rangle| = 0$ in QRPA without (with) p-n pairing.

	$\left \mu_{\!\scriptscriptstyle V-A}^{\!\scriptscriptstyle V-A} ight $	$\left \mu_{\scriptscriptstyle V+A}^{\scriptscriptstyle V-A} ight $	\in_{V-A}^{V+A}	\in^{V+A}_{V+A}
$T_{1/2} / (10^{25} \mathrm{yr})$	1.6(8.3)	1.8(2.7)	7.5(42)	4.0(39)
K	0.82(0.82)	0.82(0.82)	-0.72(-0.73)	-0.79(-0.87)

2.
$$|\langle \mathbf{m} \rangle| \neq 0$$
, $\cos \psi_i = 0$:
for $\epsilon_{V+A}^{V+A} \neq 0$
 $|\mu|^2 = (7.9 + 10K) \times 10^{12} / T_{1/2}, \quad |\epsilon_{V+A}^{V+A}|^2 = (5.1 - 6.3K) \times 10^{12} / T_{1/2}$
for $\epsilon_{V-A}^{V+A} \neq 0$
 $|\mu|^2 = (7.6 + 10.5K) \times 10^{12} / T_{1/2}, \quad |\epsilon_{V-A}^{V+A}|^2 = (4.0 - 4.9K) \times 10^{12} / T_{1/2}$

10/25/2007

Angular correlation in left-right symmetric models

For the model $SU(2)_L \times SU(2)_R \times U(1)$ using the condition $m_{W_L} \ll m_{W_R}$

$$m_{W_R} = m_{W_L} \sqrt{\frac{\epsilon}{\left|\epsilon_{V+A}^{V+A}\right|}}, \quad \varsigma = -\arctan\left(\left|\epsilon_{V-A}^{V+A}\right|/\epsilon\right), \quad \text{with } \epsilon = \left|U_{ei}V_{ei}\right|.$$

Using $m_{W_L} \approx m_{W_1} = 80.4 \text{ GeV}$ for the values $\in = 10^{-6}$, 5×10^{-7} we have got the correlation shown in Figs 3, 4.

10/25/2007

Conclusion

- We have presented a detailed study of the electron angular correlation for the long range mechanism of 0ν2β decays in a general theoretical context. This information, together with the ability of observing these decays in several nuclei, would help greatly in identifying the dominant mechanism underlying these decays.
- The proposed experimental facilities that in principle can measure the electron angular correlation in the 0ν2β decays are NEMO3, ELEGANT V and some others. There is a strong case in building at least one of them.