

# The Solar Neutrino Experiments

## **Solar Neutrinos Chronology**

| 2008-               | SNO+                                                                                                   |
|---------------------|--------------------------------------------------------------------------------------------------------|
| 2007-               | - <mark>Borexino</mark>                                                                                |
| 2006-               | - KamLAND II for <sup>7</sup> Be ν                                                                     |
| 2005                | Super-Kamiokande III (running)                                                                         |
| 2002-               | - Super-Kamiokande II (2005)                                                                           |
| 2001 -              | - KamLAND I for $\overline{\mathbf{v}}$ from nuclear reactors                                          |
| 1998 <mark>-</mark> | <b>SNO (2006)</b>                                                                                      |
| <b>1997 -</b>       | - GNO (2003)                                                                                           |
| <b>1996 -</b>       | - Super-Kamiokande I (2001)                                                                            |
| <i>1991</i> -       | - GALLEX (1997)                                                                                        |
| <u> 1990 -</u>      | SAGE (running)                                                                                         |
| <u> 1986 -</u>      | Kamiokande II (1995)                                                                                   |
| <i>1985</i>         | <i>Mikheyev</i> and <i>Smirnov</i> develop theory or resonant oscillations                             |
| <i>1970</i> -       | R. Davis Cl-Ar experiment (1994)                                                                       |
| <i>1965</i> -       | • V. Kuzmin <sup>71</sup> Ga(v,e <sup>-</sup> ) <sup>71</sup> Ge for v from the Sun                    |
| <i>1956</i>         | <b>F.</b> Reines and C. Cowen detect $\overline{v}$ from Savannah River reactor $p(\overline{v},e^+)n$ |
| 1949 -              | L. Alvarez considered CI-Ar method of detecting $v$ and proposed an extended experiment                |
| 10.40               | of detecting the theoretically expected cross section for $v$ of $2x10^{-4.5}$ cm <sup>2</sup> /atom   |
| 1946                | <b>B.</b> Pontecorvo $3^{\prime}$ Cl((v,e)) Ar for v discovery                                         |
| 1939 -              | • <i>H. Bethe</i> had postulated that the source of the sun's energy was fusion reactions in its core  |
| 1934 -              | <i>E. Fermi</i> renamed Pauli's particle as the "neutrino" and had incorporated the particle into      |
|                     | a theory of β-decay                                                                                    |
| <i>1930</i> -       | <ul> <li>W. Pauli proposed the existence of a neutral particle of low mass</li> </ul>                  |





### The results of the seven solar neutrino experiments and comparison with predictions of the standard solar models

| Facilities            | $^{37}\text{Cl} \rightarrow ^{37}\text{Ar}$ | $^{71}$ Ga $\rightarrow$ $^{71}$ Ge | <sup>8</sup> Βν flux                         |
|-----------------------|---------------------------------------------|-------------------------------------|----------------------------------------------|
|                       | (SNU)                                       | (SNU)                               | $(10^6 \text{ cm}^{-2} \cdot \text{s}^{-1})$ |
| Homestake             | 2 56+0 16+0 16                              | _                                   | _                                            |
| (CLEVELAND 98)        | 2.30-0.10-0.10                              |                                     |                                              |
| Kamiokande            |                                             |                                     | $280 \pm 0.10 \pm 0.33 +$                    |
| (FUKUDA 96)           | _                                           | _                                   | $2.80 \pm 0.19 \pm 0.33$                     |
| SAGE                  |                                             | (7) + 27 + 2(+25) = 2               |                                              |
| (ABDURASHITOV02)      | _                                           | 0/.2+3.//-3.0+3.5/-3.2              | _                                            |
| GALLEX                |                                             | 77 5+6 2+4 2/ 4 7                   |                                              |
| (HAMPEL 99)           | _                                           | //.3±0.2+4.3/-4./                   | _                                            |
| GNO                   |                                             | 65 8+10 2/ 0 6+2 4/ 2 6             |                                              |
| (ALTMANN 00)          | _                                           | 05.0+10.2/-9.0+5.4/-5.0             | _                                            |
| Super-Kamiokande      |                                             |                                     | 2 35 + 0 03+0 07/ 0 06 *                     |
| (FUKUDA 02)           | _                                           | _                                   | $2.35 \pm 0.05 \pm 0.07 + 0.00$              |
| SNO (NaCl B D2O),     |                                             |                                     | $1.68 \pm 0.086 \pm 0.08 \ddagger$           |
| 391days,              | -                                           | _                                   | $2.35 \pm 0.22 \pm 0.15$ †                   |
| PRC 72, 055502 (2005) |                                             |                                     | $4.94 \pm 0.21 \pm 0.36$ *                   |
| (Bahcall 01)          | 7.60+1.3/-1.1                               | 128 +9/-7                           | 5.05(1.00+0.20/-0.16)                        |
| (Turck-Chieze 01)     | $7.44 \pm 0.96$                             | $128 \pm 8.6$                       | $4.95 \pm 0.72$                              |

\* -  $\phi_{NC}$ , measurement of the flux via the NC.

*†*- $\phi_{ES}$ , measurement of the flux via the ES.

 $\ddagger - \phi_{CC}$ , measurement of the flux via the CC

### The results of the seven solar neutrino experiments and comparison with predictions of the standard solar models

| Facilities                                             | $^{37}\text{Cl} \rightarrow ^{37}\text{Ar}$ | $^{71}$ Ga $\rightarrow$ $^{71}$ Ge | <sup>8</sup> Bv flux                                                                           |
|--------------------------------------------------------|---------------------------------------------|-------------------------------------|------------------------------------------------------------------------------------------------|
|                                                        | (SNU)                                       | (SNU)                               | $(10^6 \text{ cm}^{-2} \cdot \text{s}^{-1})$                                                   |
| Homestake<br>(CLEVELAND 98)                            | 2.56±0.16±0.16                              | _                                   | _                                                                                              |
| Kamiokande<br>(FUKUDA 96)                              | -                                           | _                                   | $2.80 \pm 0.19 \pm 0.33$ †                                                                     |
| SAGE<br>(ABDURASHITOV02)                               | -                                           | 67.2+3.7/-3.6 +3.5/-3.2             | _                                                                                              |
| GALLEX<br>(HAMPEL 99)                                  | _                                           | 77.5±6.2+4.3/-4.7                   | _                                                                                              |
| GNO<br>(ALTMANN 00)                                    | -                                           | 65.8+10.2/-9.6+3.4/-3.6             | _                                                                                              |
| Super-Kamiokande<br>(FUKUDA 02)                        | -                                           | _                                   | <b>2.35 ± 0.03+0.07/-0.06</b> †                                                                |
| SNO (NaCl в D2O),<br>391days,<br>PRC 72, 055502 (2005) | -                                           | _                                   | $1.68 \pm 0.086 \pm 0.08 \ddagger 2.35 \pm 0.22 \pm 0.15 \ddagger 4.94 \pm 0.21 \pm 0.36 \ast$ |
| (Bahcall 01)                                           | 7.60+1.3/-1.1                               | 128 +9/-7                           | 5.05(1.00+0.20/-0.16)                                                                          |
| (Turck-Chieze 01)                                      | $7.44 \pm 0.96$                             | $128 \pm 8.6$                       | $4.95 \pm 0.72$                                                                                |

\* -  $\phi_{NC}$ , measurement of the flux via the NC.

*†*- $\phi_{ES}$ , measurement of the flux via the ES.

 $\ddagger - \phi_{CC}$ , measurement of the flux via the CC

## **Homestake Radiochemical experiment**





New radiochemical solar neutrino detectors considered in 1972 (Evans J C 1972 *Proc Solar Neutrino Conf.* (25-26 February, Irvine: unpublished) p. B-6E)

|                               |                   | ]  | Relative response (%) |                 |                |     |        |
|-------------------------------|-------------------|----|-----------------------|-----------------|----------------|-----|--------|
| Target                        | Product           | рр | рер                   | <sup>7</sup> Be | <sup>8</sup> B | CNO | (tons) |
| <sup>87</sup> Rb              | <sup>87m</sup> Sr | 74 | 2                     | 21              | 1              | 3   | 32     |
| <sup>55</sup> Mn <sup>1</sup> | <sup>55</sup> Fe  | 67 | 3                     | 25              | 1              | 3   | 420    |
| <sup>71</sup> Ga <sup>2</sup> | <sup>71</sup> Ge  | 69 | 2                     | 26              | 0              | 3   | 19     |
| <sup>7</sup> Li <sup>3</sup>  | <sup>7</sup> Be   | 0  | 18                    | 15              | 51             | 16  | 17     |

<sup>1</sup> Domogatsky G V 1977, Soviet J. of Nucl. Phys. 25, 133
 <sup>2</sup> Kuzmin V A 1965 *Zh Eksp Teor Fiz* **49** 1532 [1966 *Sov Phys JETP* **22** 1051]
 <sup>3</sup> Bahcall J N 1969 *Phys Rev Lett* **23** 251

## From p decay to solar neutrino

## 1986-1995 v + e<sup>-</sup> -> v + e<sup>-</sup>



upgrade :

- hermetic, live anticounter
- water purification system
  multi-hit time and charge

measurements



The Kamiokande II detector: **3,000 tons of water**, viewed by **948 PMTs**.

The final data sample in the fiducial volume of 680 tons with energy above 7 MeV (7.5 MeV) and less than 20 MeV consists of 6368 events.

#### **Direction to the Sun.**

The number of solar neutrino events is **390**<sup>+35</sup>-<sub>33</sub>, whereas expected is **785** for the SSM

 $R_{K_{II}} = \frac{\Phi_{measured}}{\Phi_{predicted}} = 0.48 \pm 0.08 \qquad R_{CI}(^{8}R)$ 

Water

Th, Rn

Paradox: R<sub>CI</sub>(<sup>8</sup>B + <sup>7</sup>Be) - R<sub>KII</sub> (<sup>8</sup>B) ~ 0 (~15%)





13-th Lomonosov conference on elementary particle physics Moscow, August 23-29,2007



#### 1986-1995 v + e<sup>-</sup> -> v + e<sup>-</sup>



Φ measured R<sub>KII</sub> = ----- = 0.54 ± 0.08/ <sup>+0.10</sup> Φ predicted

 ${}^{7}Be + p \rightarrow {}^{8}B + \gamma$   ${}^{8}Be^{*} + e^{+} + \nu_{e}$   ${}^{2}\alpha$ 

### GALLIUM SOLAR NEUTRINO EXPERIMENT



 1 SNU = 1 interaction/sec in a target that contains 10<sup>36</sup> atoms of the neutrino absorbing isotope.  $7^{1}Ga + V \rightarrow 7^{1}Ge + e^{-}$ Kouzmine, 1965 Q = 233,2 keV  $T_{1/2} = 11,43 \text{ d}$ LOW THRESHOLD:

233 keV

**SENSITIVE TO DOMINANT p-p NEUTRINOS** 

<u>SSM PREDICTIONS:</u> BAHCALL-PINSONNEAULT: 128 +9 / -7 SNU (Ισ)

### p-p NEUTRINOS CONTRIBUTE 70 SNU (54%) OF THE RATE

IF ONE ASSUMES ONLY THAT THE SUN IS INTHERMAL EQUILIBRIUM, THEN THE MINIMUM RATE IN A GALLIUM EXPERIMENT IS 79 SNU.





# SAGE

Baksan Neutrino Observatory, northern Caucasus, 3.5 km from entrance of horizontal adit, 50 tons of metallic <sup>71</sup>Ga, 2000 m deep, 4700 m.w.e. =>  $\Phi\mu \sim 2.6 \text{ m}^{-2} \text{ day}^{-1}$ . Data taking: Jan 1990-Dec 2005, 145 runs, running. Atoms of <sup>71</sup>Ge chemical are extracted and its decay is counted. Sensitivity: One <sup>71</sup>Ge atom from 5.10<sup>29</sup> atoms Ga

with efficiency ~90%

 $R^{SAGE}_{Ga} = 66.5^{+3.5}_{-3.4} + 3.5_{-3.2} SNU = 66.5^{+4.9}_{-4.7} SNU$ 







## GALLEX/GNO





|                                                                                                                                                                                                                      |                                         | 51 <b>C</b>                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 37/Ar                                                                     |                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------|
| Gallium                                                                                                                                                                                                              | chloride s                              | olution                                                      | Gallium metal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (SAGE)                                                                    |                                               |
|                                                                                                                                                                                                                      | (GALLE                                  | X)                                                           | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                           |                                               |
|                                                                                                                                                                                                                      | (1)                                     | (2)                                                          | Contraction of the local division of the loc |                                                                           |                                               |
| m <sub>Ga</sub> (tons)                                                                                                                                                                                               | 30.4                                    | 30.4                                                         | 13.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13.1                                                                      |                                               |
| m <sub>of target</sub> (kg)                                                                                                                                                                                          | 35,5                                    | 35,5                                                         | 0,513                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 330                                                                       |                                               |
| enrichment (% <sup>50</sup> Cr)                                                                                                                                                                                      | 38,6                                    | 38,6                                                         | 92,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 96,94% <sup>40</sup> Ca (natural                                          | Ca)                                           |
| source specific<br>activity (KCi/g)                                                                                                                                                                                  | 0,048                                   | 0,052                                                        | 1,01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 92,7                                                                      |                                               |
| source activity<br>(MCi)                                                                                                                                                                                             | 1,71                                    | 1,87                                                         | 0,52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,41                                                                      |                                               |
| expected rate                                                                                                                                                                                                        | 11,7                                    | 12,7                                                         | 14,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13,9                                                                      |                                               |
| $\frac{5^{51} \text{Cr} (27.7 \text{ days})}{427 \text{ keV } \nu (9.0\%)}$ $\frac{427 \text{ keV } \nu (9.0\%)}{432 \text{ keV } \nu (0.9\%)}$ $\frac{747 \text{ keV } \nu (81.6\%)}{752 \text{ keV } \nu (8.5\%)}$ | support<br>structure<br>Copper<br>hield | sg Cr<br>0 Cr-50<br>Tungsten<br>stield<br>Chromium<br>gruins | Chromium rods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <sup>37</sup> Ar (35.4<br>813 keV<br>811 keV<br><sup>37</sup> Cl (stable) | <sup>7</sup> ∨(9.8%)<br><sup>7</sup> ∨(90.2%) |



## Super-Kamiokande (1996)



SK experiment: 50,000 tons of water, surrounded by 11,000 PMTs to detect Cherenkov light in the water. Fiducial Volume 22,500 tons





ID PMT: SK-II = ~5200 SK-III = 11146 (same as SK-I) Original energy & vertex resolutions for low-energy events

Solar neutrinos below 5.0MeV with improved analysis tools and lower Rn backgrounds

Precise study on spectrum distortion in SK-III



# After Six Solar v Experiments

- Gallium (Radiochemical)
- 1 Chlorine (Radiochemical)

Kamiokande +Super-Kamiokande (Water



# Where have Solar Neutrinos gone?

## **Solar Neutrino Observations (~ 1995)**

| experiment                   | solar neutrinos                           | data / theory |
|------------------------------|-------------------------------------------|---------------|
| Homestake                    | <sup>7</sup> Be + <sup>8</sup> B + ···    | 0.29 ± 0.03   |
| (Cl)<br>Kamiokand            | e <sup>8</sup> B                          | 0.48 ± 0.08   |
| (H <sub>2</sub> O)<br>GALLEX | pp + <sup>7</sup> Be + <sup>8</sup> B + … | 0.60 ± 0.09   |
| (Ga)<br>SAGE                 | pp + <sup>7</sup> Be + <sup>8</sup> B + … | 0.52 ± 0.09   |
| (Ga)                         |                                           |               |

Where have Solar Neutrinos gone ?





# **Background to SNO**

- 1984 Herb Chen proposes a heavy water solar neutrino detector with Neutral Current detection capability
- 1985 Mikheyev and Smirnov develop theory or resonant oscillations
- Suddenly the 'World' believes in neutrino oscillations
- Single set of parameters solves SNP with small vacuum mixing, dark matter and supernova!!!
- 1990 SAGE shows greatly suppressed Ga rate
- 1990 Start of construction of SNO

# SNO - 3 neutron detection methods Intro



| <b>Phase I (D<sub>2</sub>O)</b>                | <b>Phase II (salt)</b>          | Phase III ( <sup>3</sup> He)                                                                                                                                                            |
|------------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nov. 99 - May 01                               | July 01 - Sep. 03               | Summer 04 - Dec. 06                                                                                                                                                                     |
| n captures on                                  | 2 t NaCl. n captures on         | 40 proportional counters                                                                                                                                                                |
| ${}^{2}H(n, \gamma){}^{3}H$                    | ${}^{35}Cl(n, \gamma){}^{36}Cl$ | ${}^{3}$ He(n, p) ${}^{3}$ H                                                                                                                                                            |
| $\sigma$ = 0.0005 b                            | $\sigma = 44 b$                 | $\sigma$ = 5330 b                                                                                                                                                                       |
| Observe 6.25 MeV $\gamma$                      | Observe multiple $\gamma$ 's    | Observe p and ${}^{3}$ H                                                                                                                                                                |
| PMT array readout                              | PMT array readout               | PC independent readout                                                                                                                                                                  |
| Good CC                                        | Enhanced NC                     | Event by Event Det.                                                                                                                                                                     |
| <sup>2</sup> H+n<br>6.25 MeV<br><sup>3</sup> H | <sup>35</sup> Cl+n<br>8.6 MeV   | $\leftarrow 5 \text{ cm} \rightarrow$ $\downarrow \qquad \qquad$ |





Day-Night Asymmetry

# SNO with liquid scinitillator for pep and CNO



# KamLAND detector

### detector location: old Kamiokande site



# **Reactor Experiment in KamLAND**





## 1. KamLAND-II (summer in 2006)

<sup>7</sup>Be solar neutrino detection: Precise measurements of reactor-, geo- and solar neutrinos:

### **MEXT 5-year project from 2005**

1st phase experiment ( $E_{th} = 1.8 \text{ MeV}$ )  $\overline{v}_e + p \rightarrow e^+ + n$ 

 Neutrino Oscillation Search by Reactor Anti-neutrinos



O Terrestrial Anti-neutrino Detection





2nd phase experiment ( $E_{th} = 200 \text{ keV}$ )  $v_e + e^- \rightarrow v_e + e^-$ 





KamLAND-II



| Combine | d Solar | ·/KamI | AND | Fi |
|---------|---------|--------|-----|----|
|         |         |        |     |    |

| Analysis     | Δm <sup>2</sup><br>(10 <sup>-5</sup> eV <sup>2</sup> ) | tan <sup>2</sup> 0                 |
|--------------|--------------------------------------------------------|------------------------------------|
| SNO only     | <b>5.0</b> <sup>+6.2</sup> <sub>-1.8</sub>             | 0.45 <sup>+0.11</sup> -0.10        |
| Global solar | <b>6.5</b> <sup>+4.4</sup> <sub>-2.3</sub>             | 0.45 <sup>+0.09</sup> -0.08        |
| KamLAND      | 7.9 <sup>+0.6</sup> -0.5                               | <b>0.46</b> <sup>+0.09</sup> -0.08 |
| Combined     | <b>8.0</b> <sup>+0.6</sup> <sub>-0.4</sub>             | <b>0.45</b> <sup>+0.09</sup> -0.07 |

Stan Wojcicki, NuFact'06, Irvine, CA August 24, 2006





## Gallium Experiments: SAGE, GALLEX, GNO

Radiochemical experiments  $v_e + {}^{71}Ga \rightarrow {}^{71}Ge + e^$ threshold  $E^{Ga}_{th} = 0.233 \text{ MeV} \Longrightarrow$  all v fluxes (pp, 7Be, 8B, pep, hep, 13N, 15O, 17F) SAGE + GALLEX + GNO  $\Longrightarrow$  R<sup>exp</sup><sub>Ga</sub> = 67.7 ± 3.6 SNU Standard Solar Model  $\Longrightarrow$  R<sup>SSM</sup><sub>Ga</sub> = 128  ${}^{+9}_{-7}$  SNU

The measured electron neutrino *pp* flux at Earth of  $(3.23^{+0.76}_{-0.78}) \times 10^{10}/(\text{cm}^2\text{-s})$ (5.94 ± 0.06) × 10<sup>10</sup>/(cm<sup>2</sup>-s) (SSM) ×( $\langle P_i^{ee} \rangle = 0.555$ ) =  $(3.30 \pm 0.07) \times 10^{10}/(\text{cm}^2\text{-s})$ 

### **Excellent** agreement

**1** SNU = 1 interaction/sec in a target that contains  $10^{36}$  atoms of the neutrino absorbing isotope.



# **Present status of solar neutrino facilities**

| 1          |                    |                                  |        |                                                |                                            |
|------------|--------------------|----------------------------------|--------|------------------------------------------------|--------------------------------------------|
| SAGE       | Radiochemical      | 50 ton of Ga                     | Russia | pp,pep,CNO,<br><sup>7</sup> Be, <sup>8</sup> B | Running and will run at<br>least 3-4 years |
| SNO        | Scintillator       | 1000 ton                         | Canada | pep,CNO,<br><sup>7</sup> Be, <sup>8</sup> B    | Under reconstruction                       |
| Super-K    | Water<br>Cherenkov | 50000 ton of<br>H <sub>2</sub> O | Japan  | <sup>8</sup> B                                 | Running as SK III will<br>run long time    |
| KamLAND II | Scintillator       | 1000 ton                         | Japan  | pep,CNO,<br><sup>7</sup> Be, <sup>8</sup> B    | Plan to start in 2007!                     |
| Borexino   | Scintillator       | 300 ton                          | Italy  | pep,CNO,<br><sup>7</sup> Be, <sup>8</sup> B    | Hope to start in 2007?                     |

Borexino is an unsegmented liquid detector: 300 tonnes of well shielded ultrapure scintillator (Pseudocumene), viewed by 2200 photomultipliers. The detector core is a transparent spherical vessel (Nylon Sphere, 100 micron thick), 8.5 m of diameter, surrounded by 1000 tonnes of a high-purity buffer liquid.

The detection of the <sup>7</sup>Be neutrino signal in the 100 tonnes of the Borexino Fiducial Volume requires the intrinsic radiopurity of the scintillator to bebelow 5x10<sup>-15</sup> g/g of U,Th equivalent.



BOREXino Experiment

# The Borexino physics:

- First measurement of solar neutrinos below 1 Mev in real-time!



(arXiv:0708.2251v1 [astro-ph] 16 Aug 2007, First real time detection of <sup>7</sup>Be solar neutrinos by

**Borexino**)

### **5.** Conclusions

We have measured the 0.862 MeV <sup>7</sup>Be component of solar neutrino spectrum in the Borexino detector. The best value for the rate is  $47 \pm 7$ stat  $\pm 12$ sys counts/(day  $\cdot 100$  ton). The expected rate based on solar models and neutrino oscillations is  $49\pm4$  counts/(day  $\cdot 100$  ton) while the rate expected without oscillations is  $75\pm4$ counts/(day  $\cdot 100$  ton).

- Gran Sasso is favorite over Kamland, being deeper (less <sup>11</sup>C background): expected (<u>signal/noise~0.4</u>);
- possibility to apply three-fold coincidence cut to further reduce <sup>11</sup>C background (<u>signal/noise>2</u>); [Phys.Rev.C 71,055805 (2005)]

( from http://borex.lngs.infn.it/) May 15, 2007 11:25 CEST: Borexino filling completed!!



May 16, 2007 01:25 CEST: first run with full detector started - we are taking data! -



|                 |                                  |                                  |                                  |                                  | Full data set                                         |
|-----------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|-------------------------------------------------------|
| Time period     | 05/91-01/97                      | 05/98-04/03                      | 05/91-04/03                      | 04/03-12/06                      | 01/90-12/06                                           |
| Number of runs  | 65                               | 58                               | 123                              |                                  |                                                       |
| GALLEX/GNO      | $77.5 \pm 6.2^{+4.3}_{-4.7}$     | $62.9^{+5.5}$ -5.3 $\pm 2.5$     | $69.3 \pm 4.1 \pm 3.6$           | -                                | -                                                     |
|                 | 77.5 <sup>+7.6</sup> -7.8        | <b>62.9</b> <sup>+6.0</sup> -5.9 | $69.3 \pm 5.5$                   |                                  |                                                       |
| Number of runs  | 45                               | 49                               | 94                               | 50                               | 157                                                   |
| SAGE            | $79.4^{+8.8}_{-8.4} \pm 3.9$     | $65.0^{+5.1}_{-4.9} \pm 3.4$     | $68.9^{+4.5}_{-4.3} \pm 3.4$     | $64.0^{+5.3}_{-5.1} \pm 3.4$     | <b>66.3</b> <sup>+3.3</sup> -3.2 <sup>+3.5</sup> -3.2 |
|                 | <b>79.4</b> <sup>+9.6</sup> -9.3 | <b>65.0</b> <sup>+6.1</sup> -6.0 | <b>68.9</b> <sup>+5.6</sup> -5.5 | <b>64.0</b> <sup>+6.3</sup> -6.1 | <b>66.3</b> <sup>+4.8</sup> -4.5                      |
| Number of runs  | (110)                            | (107)                            | (217)                            |                                  | (288)                                                 |
| SAGE+GALLEX/GNO | $78.3 \pm 5.9$                   | $63.9 \pm 4.2$                   | $69.1 \pm 3.9$                   |                                  | $67.6 \pm 3.6$                                        |





If one assumes the rate in Gallex-GNO varies linearly in time then the best fit gives [Capture rate =  $82 \pm 10 - (1.7 \pm 1.1) \times [t(year) - 1990]$  Altmann M *et al.* 2005 *Phys Lett* B **616**]



At the present time we cannot differentiate between these two hypotheses, but it should become possible to do so with additional data.

## **Comparison of source experiments with Ga**

CALLEY  $C_{\nu}$  1 [2 3] CALLEY  $C_{\nu}$  2 [2 3] SACE 5 [ $C_{\nu}$  [1]

| Item                                                                 | GALLEA CITZ, J                | GALLEA CIZ Z,J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SAGE CI II                              | SAGE AI                 |
|----------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------|
|                                                                      |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                         |
| Source production                                                    |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                         |
| Mass of reactor target (kg)                                          | 35.5                          | 35.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.512                                   | 330                     |
| Target isotopic purity                                               | 38.6% <sup>50</sup> Cr        | 38.6% <sup>50</sup> Cr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 92.4% <sup>50</sup> Cr                  | 96.94% <sup>40</sup> Ca |
| Source activity (kCi)                                                | 1714 +30/-43                  | 1868 +89/-57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $516.6 \pm 6.0$                         | $409 \pm 2$             |
| Specific activity (kCi/g)                                            | 0.048                         | 0.052                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.01                                    | 92.7                    |
|                                                                      |                               | CONTRACTOR OF STREET, |                                         |                         |
| Gallium exposure                                                     |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10 C |                         |
| Gallium mass (tones)                                                 | 30.4 (GaCl <sub>3</sub> :HCl) | <b>30.4 (GaCl<sub>3</sub>:HCl)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13.1 (Ga metal)                         | 13.1 (Ga metal)         |
| Gallium density (10 <sup>21</sup> <sup>71</sup> Ga/cm <sup>3</sup> ) | 1.946                         | 1.946                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21.001                                  | 21.001                  |
| Measured production rate o ( <sup>71</sup> Ge                        | (d) $11.9 \pm 1.1 \pm 0.7$    | 10.7 ±1.2 ±0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $14.0 \pm 1.5 \pm 0.8$                  | 11.0 +1.0/-0.9 ±0.0     |
| R=P(measured)/P(predicted)                                           | 1.00 +0.11/-0.10              | 0.81 ±0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.95 ±0.12                              | 0.79 +0.09/-0.10        |
|                                                                      |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                         |
|                                                                      |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                         |

The weighted average value of R, the ratio of measured to predicted <sup>71</sup>Ge production rates, is  $0.88 \pm 0.05$ , more than two standard deviations less than unity.

Itom



SACE 37Am





|                                   |            | Stage of K&D                                  |                                                                                |
|-----------------------------------|------------|-----------------------------------------------|--------------------------------------------------------------------------------|
|                                   | experiment | reaction                                      | detector                                                                       |
| CC exp. (ν <sub>e</sub> only)     | LENS       | $v_e^{115}In \rightarrow {}^{115}Sn,e,\gamma$ | 60 tons In-loaded scintillater<br>(pp, <sup>7</sup> Be)                        |
|                                   | MOON       | $v_e^{100} Mo \rightarrow e^{-100} Tc(\beta)$ | 3,3 ton 100Mo foil +plastic<br>scintillator (pp, <sup>7</sup> Be)              |
|                                   | Lithium    | $v_e^7 Li \rightarrow e^{-7}Be$               | Radiochemical, 10 ton lithium                                                  |
|                                   | CLEAN      | ve→ve <sup>-</sup>                            | 10 ton Liquid Ne (pp, <sup>7</sup> Be)                                         |
|                                   | XMASS      | ve→ve <sup>-</sup>                            | 10 ton Liquid Xe (pp, <sup>7</sup> Be)                                         |
| ve scattering exp.                | HERON      | ve→ve¯                                        | <b>10 ton super-fluid He (pp,<sup>7</sup>Be)</b>                               |
| $(v_e + \alpha (v_\mu + v_\tau))$ | TPC type   | ve→ve¯                                        | Tracking electron in gas<br>target (pp, <sup>7</sup> Be)                       |
| proposed                          | SNO        | ve→ve¯                                        | 1000 ton Liquid scintillater<br>(pep, <sup>7</sup> Be,CNO)                     |
|                                   | LENA       | ve→ve¯                                        | 50,000 ton Liquid scintillater<br>Ne (pp, <sup>7</sup> Be,CNO, <sup>8</sup> B) |



# **SNOLAB Underground facilities**



# **Construction Status**



- Phase I (Cube Hall, Ladder Labs)
  - Blasting is complete, concrete floors and wall covering almost complete and will be finished in June.
  - Outfitting contractor mobilizes in June.
     Outfitting of the new personnel facilities and laboratory spaces will be completed in early 2008. Construction activities for experiment installation in the new halls can begin in early 2008.
- Phase II (Cryopit)
  - Funding almost finalized. The intent is to begin excavation next month.
  - Excavation would be in parallel with outfitting of Phase I and would be ready for occupancy early 2009.









# **Underground Facilities**

- All space will be clean (Class ~1000)
- All space at 2 km depth
- Services such as cooling, power, UPW etc
- Materials handling including cleaning



# **SNOLAB Science Programme**

- Dark Matter Search
  - Picasso Superheated droplets
  - DEAP Liquid Argon scintillation
  - LUX, Zeplin Liquid Xe scintillation/ionization
  - Super CDMS Ge thermal + ionization
- All look for scattering of WIMPs from regular matter and employ some mechanism for rejecting gamma backgrounds



# Low Energy Solar Neutrinos

- SNO has measured the <sup>8</sup>B spectrum with precision comparable with theory
- SNO+ is a proposal to replace the heavy water in SNO with liquid scintillator
  - Could provide a precision measure of <sup>7</sup>Be and pep pep would be unique capability and would test the most precise predictions of solar models
  - Some sensitivity to CNO rates
- CLEAN is a proposal for a liquid Ne scintillation detector
  - offers a direct counting measure of pp neutrinos



# **The Future**

- SNOLAB is almost complete
- The future for discoveries in Dark Matter, double beta decay, solar physics and geo-neutrinos looks very exciting
- We continue down the route established by the vision of Zatsepin





Бруно Понтекоры



"The object of this note is to show that the experimental observation of an inverse process produced by neutrinos is not out of the question with the modern experimental facilities, and to suggest a method which might make an experimental observation feasible."

" The neutrino flux from the sun is of the order of  $10^{10}$  cm<sup>-2</sup>sec<sup>-1</sup>. The neutrinos emitted by the sun, however, are not very energetic. The use of high intensity piles permits two possible strong neutrino sources."

background, is fulfilled.

B. PO

CHALK R

20 NOV

Causes other than inverse  $\beta$  processes capable of producing the radio element looked for are:

 (a) (np) processes and Nuclear Explosions. The production of background by (np) process against the nucleus bomberded is zero,
 if the particular inverse of process selected involves the

