13th Lomonosov Conference on Elementary Particle Physics Moscow State University, Russia August 23 – 29, 2007

Big-Bang Cosmology, Nucleosynthesis and Neutrino Oscillation

Taka Kajino

National Astronomical Observatory Dept of Astronomy, Grad School of Science, University of Tokyo

OUTLINE

X-process operates in SN v-process, too !

- New Method using "MSW Effect" to determine θ_{13} and Mass Hierarchy ! SN1987A

Thermal History of our Expansing Universe

BBN constrains Brane World Cosmology

Ichiki, Garnavich, Kajino, Mathews & Yahiro, PRD 68 (2003) 083518

BBN and Particle Physics

Smith, Kawano & Malaney, ApJ S85(2003) 219; Mathews, Kajino & Shima, PRD71 (2005) 21302 (R).

Plateau like HIGH ⁶Li ABUNDANCE --- primordial ?

Theoretical of X decay: $X \rightarrow \gamma_{NT}$

Kusakabe, Kajino & Mathews, D74 (2006), 023526.

Photon # density $N_{\gamma}^{QSE}(E_{\gamma}) = \frac{n_X p_{\gamma}(E_{\gamma})}{\Gamma_{\gamma}(E_{\gamma})\tau_X}$ $H_r = \sqrt{\frac{8\pi G\rho_{rad}^0}{3}}$

BBN Light Elemental Abundance Constraints on X particle properties

Kusakabe, Kajino & Mathews, Phys. Rev. D74 (2006), 023526.

Constraint from the CBR energy spectrum

Case of Leptonic X⁻

Kusakabe, Kajino, Boyd, Yoshida, and Mathews (2007)

If relic X⁻ particle is leptonic, X's form bound exotic nuclei like ⁴He_X, ⁷Be_X, ⁴He_{XX}, ⁷Be_{XX}, etc.

Recomination of X particles destroys normal nuclei, and new class of BBN proceeds:

⁴He_x + d → ⁶Li + X $^{-2}$ Pospelov (2006), Hamaguchi et al. (2007)₋₄ ⁷Be_x + p → ⁸B^{*}_x → ⁸B + γ $\stackrel{\text{ff}}{=}$ -6 ⁸B^{*}_x = nuclear excitation Kusakabe et al. (2007) ⁸B^{*}_x = atomic excitation Bird et al. (2007) -12 ⁷Be_x → ⁷Li + X⁰ Bird et al. (2007) -14

Depletion Factor of 6,7Li/H ratio (Abundance normalized to MPHSs)

Kusakabe, Kajino, Boyd, Yoshida, and Mathews (2007)

Neutrino Physics in Supernovae

v-oscillation, proposed by Pontecorvo 1957, Sov. Phys. JETP 6, 429 ~ ibid. 1960, 37, 1236,

Super-K, SNO, KamLand (reactor v) determined Δm_{12}^2 and θ_{12} uniquely.

Super Kamiokande (atmospheric v) determined Δm_{23}^2 and θ_{23} uniquely.

"UNKNOWN" Neutrino-Oscillation Parameters: $\sin^2 2\theta_{13} < 0.1$, $| \Delta m_{13}^2 | = 2.4 \times 10^{-3} \text{ eV}^2$, $\delta_{CP} = CP$ violation phase?

We propose a new method to determine θ_{13} and am_{13}^2 using the MSW-effect on SN v-process nucleosynthesis.

MSW: Wolfenstein 1978, PR D17, 2369; Mikheyev & Smirnov 1986, Sov. J. Nucl. Phys. 42, 913.

X-process operates in Supernova v-Process !

Neutrino Oscillation (MSW Effect) through propagation

How to observe the ⁷Li/¹¹B ratio ?

(2) SPECTROSCOPIC OBSERBATION

¹¹B absorption line ~ 2497 A (Space Telescope like HST) ¹¹B/¹⁰B, observed in MPH Stars!

Rebull et al. ApJ 507 (1998) 387; Proc. (2000)

⁷Li absorption line ~ 6708 A (Ground Base Telescope like SUBARU) ⁷Li & ⁷Li/⁶Li, observed in MPH Stars, but BBN-comp. dominates!

LMXB for both ⁷Li & ¹¹B !

Many observations (1982 - present)

SN1987A Remnant

Crab Nebula

R-element enhanced Metal-Poor Halo Stars

Neutrino Signal in 16.2 M_o- SN Model

Shock Propagation Effect

Kawagoe, Kajino, Sumiyoshi, Suzuki, & Yamada (2007)

v-signal should appear at 3~10s

Summary

- 1 .Big-Bang Nucleosynthesis provides "critical test" for particle & nuclear theories and observational cosmology.
 - 1a: Brane World Cosmology with mass-energy exchange between brane and bulk can describe accelarating cosmic expansion with $\Omega_{\Lambda} = 0$!
 - 1b: Relic X- particle model (progenitor of CDM), if they are bound in normal nuclei or radiative decay to non-thermal photons, can solve both ⁶Li and ⁷Li problems.
- 2 The core-collapse SN v-process provides a unique tool to determine the unknown v-oscillation parameter θ_{13} and mass hierarchy Δm_{13} of active v's in terms of v-matter effect (MSW) in nucleosynthesis.

 $\sin^2 2\theta_1$

Theoretical Uncertainties ?

(1) Neutrino Energy Spectrum, well known?

Fermi-Dirac distr. of T_{v}

How to determine T_v ? \leftarrow from "SN1987A obs." & "GCE"

Yoshida, T., Kajino, T., & Hartmann, D. H., PRL 94 (2005), 231101

(2) Neutrino-Nucleus Cross Section σ_v (E), well known?

Previous SM cal. by W. Haxton (1990)

Precise SM cal. using better interactions, done (2006) !

Suzuki, Chiba, Yoshida, Kajino & Otsuka, PR C74 (2006), 034307.

Galactic Chemical Evolution of ⁹Be & ^{10,11}B

Theoretical Uncertainty?

Haxton's SM cal. (Woosley et al. ApJ. 356 (1990), 272)

Suzuki's new SM cal. With new Hamiltonian

Suzuki, Chiba, Yoshida, Kajino & Otsuka, PR C74 (2006), 034307

- ⁴He: WBP (Warburton-Brown) Hamiltonian = Similar to microscopic ab initio cal. of Gazit et al. PRC70 (2004) 048801
- ¹²C: SFO Hamiltonian = Spin-isospin flip int. with enhanced $op_{1/2}-op_{3/2}$ separation from Cohen-Kurath
 - µ-moments of p-shell nuclei
 - GT strength for ${}^{12}C \rightarrow {}^{12}N$, ${}^{14}C \rightarrow {}^{14}N$, etc.
 - proper tensor int.

Neutrino Oscillation Matter (MSW) Effect

Neutrino Oscillation Effect on 7Li/11B-ratio

Previous SM- σ_v **(E) of Haxton**

Woosley, Haxton, Hoffmann, Wilson, ApJ. (1990). Hoffmann & Woosley, ApJ. (1992).

New SM- σ_v (E) using WBP(⁴He) & SFO(¹²C) interactions

Suzuki, Chiba, Yoshida, Kajino & Otsuka, Phys. Review C74 (2006), 034307.

Almost the same result $! \rightarrow {}^{7}Li/{}^{11}B$ -ratio is SM independent !

Similarity between Electro-Magnetic & Weak Interactions

$$\begin{aligned} \textbf{EM-current} &= \overrightarrow{V}, \quad \textbf{Weak-current} = \overrightarrow{V} - \overrightarrow{A} \\ \vec{V} &\approx g_V^{IV} \frac{i}{2m} \vec{\sigma} \times \vec{q} + \frac{g_V}{2m} (\vec{p} + \vec{p}') \\ \vec{A} &\approx g_A \vec{\sigma} \end{aligned}$$

Weak operator in non-relativistic limit

Gamow-Tellar operator =
$$\vec{\sigma} \tau_{\pm}$$

Spin-Dipole operator = $[\vec{\sigma} \times \vec{r}]^J \tau_{\pm}$

We still don't have the v-beam !

However, we can use Electro-Magnetic PROBE:

⁴He(γ_{NT} , n)³He and ⁴He(γ_{NT} , p)³H ⁴He(ν_{e} , e⁻), ⁴He($\overline{\nu_{e}}$, e⁺)

