

MINOS Results and Prospects

J. Pedro Ochoa California Institute of Technology *for the MINOS collaboration*

13th Lomonosov Conference on Elementary Particle Physics

Moscow, Russia - August 2007

Overview of MINOS

Physics goalsBeam & Detectors

• v_{μ} disappearance

Latest results

Prospects

ν_µ disappearance
 ν_e appearance
 NC analysis
 Anti-neutrinos

***** Summary

Argonne – Athens – Benedictine – Brookhaven – Caltech – Cambridge – Campinas – Fermilab – College de France – Harvard – IIT – Indiana – Minnesota, Twin Cities – Minnesota, Duluth – Oxford – Pittsburgh – Rutherford Lab – Sao Paulo – South Carolina – Stanford – Sussex – Texas A&M – Texas-Austin – Tufts – UCL – Western Washington – William & Mary - Wisconsin

MINOS Physics Goals

***** Test the v_{μ} disappearance hypothesis

- > Measure $|\Delta m_{32}^2| \& \sin^2(2\theta_{23})$ precisely PRL 97, 191801 (2006)
- > Provide high statistics discrimination against other disappearance models (neutrino decay... etc).
- ***** Search for subdominant v_e appearance
- **\diamond** Compare v, \overline{v} oscillations
 - > Test of CPT
- Neutrino/nucleon interaction physics
- Atmospheric neutrino oscillations PRD 75, 092003 (2007) PRD 73, 072002 (2006)
- Cosmic ray physics hep-ex/0705.3815

$$\begin{pmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix}$$

At MINOS baseline:

$$P(v_{\mu} \rightarrow v_{\mu}) \cong 1 - \sin^{2} \theta_{23} \sin^{2} \frac{\Delta m_{32}^{2} L}{4E}$$

$$P(v_{\mu} \rightarrow v_{e}) \cong \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \frac{\Delta m_{32}^{2} L}{4E}$$
3

MINOS (<u>Main Injector Neutrino Oscillation Search</u>) is a longbaseline neutrino oscillation experiment:

A <u>Near detector</u> at Fermilab to measure the beam composition and energy spectrum. A <u>Far detector</u> at the Soudan Mine in Minnesota to search for neutrino oscillations.

2+ years of MINOS running

Currently in shutdown until October 2007

The MINOS detectors

FAR DETECTOR

NEAR DETECTOR

1 kton mass 282 steel and 182 scintillator planes

Functionally identical detectors:

- > Iron-scintillator sampling calorimeters.
- > Magnetized steel planes $B \approx 1.2T$
- GPS time stamping to synchronize FD with ND/beam.

5.4 kton mass 484 scintillator/steel planes

MINOS

Event topology in MINOS

55%/√E (GeV)

13% curvature 8

Principle of the measurement:

Improvements over previous analysis (PRL 97, 191801 2006) :

- ✓ Better reconstruction
- ✓ Improved event selection
 + twice the data
- ✓ New intra-nuclear modeling
- ✓ Improved shower modeling

+ twice the data (2.5x10²⁰ POT total)

Improved v_{μ} CC event selection

events / 10¹⁸ PoT

- Multivariate likelihoodbased PID based on:
 - Track properties
 - Event length
 - Event kinematics
- ✤ Data-MC agree very well.

Hadron production tuning

- Data-MC agree very well but situation **can be improved**.
- ✤ Parameterize Fluka 2005 hadron production as $f(x_f, p_t)$ and fit <u>using</u> <u>ND data</u> taken in different energy configurations.
- Horn focusing, beam misalignments, energy scale, cross section and NC background are included in fit.

Improved agreement obtained in all energy configurations !

Predicting the FD spectrum

12

- ***** Directly use ND data to perform extrapolation.
- Use MC to provide necessary corrections for acceptance and energy smearing.
- Use knowledge of pion decay kinematics and geometry to predict FD spectrum from measured ND spectrum:

♦ Encapsulate ND \rightarrow FD transport in "Beam Matrix":

Systematic uncertainties

- Systematic uncertainties obtained by generating MC with the following systematic shifts and using it as "fake data", with standard oscillation parameters.
- The three largest uncertainties were included as nuisance parameters in the oscillation fit.

Uncertainty	$\Delta m^2 (10^{-3} \text{ eV}^2)$	$\sin^2(2\theta_{23})$
Near/far normalisation (4%)	0.065	< 0.005
Abs. shower energy scale (10%)	0.075	< 0.005
NC normalisation (50%)	0.010	0.008
All other	0.040	< 0.005
Total sys. (quad. sum)	0.11	0.008
Statistical	0.17	0.080

Oscillation Results for 2.50E20 p.o.t

Data sample	Observed	Expected (no osc.)	Observed /expected
ν_{μ} (all E)	563	738 ± 30	0.74 (4.4 σ)
ν _μ (<10 GeV)	310	496 ± 20	0.62 (6.2 σ)
ν _μ (<5 GeV)	198	350 ± 14	0.57 (6.5 σ)

14

✤ Data is well described by oscillation best fit:

15

MINOS

MINOS Preliminary

Comparison with 2006 MINOS result (PRL 97, 191801 2006)

Outlook is very positive:

MINOS Sensitivity as a function of Integrated POT

***** MINOS could make the first non-zero measurement of θ_{13} .

$$P(v_{\mu} \rightarrow v_{e}) \cong \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \frac{\Delta m_{23}^{2} L}{4E}$$

- Challenge lies in signal & background separation:
 - NC events are the dominant background
 - Much effort went into devising techniques that discriminate between EM and hadronic showers.
 - By the end of this year sensitivity will be comparable to the world's current best limit (CHOOZ)

2 δ (π) MINOS $\Delta m_{23}^2 = 2.7 \ 10^{-3} \ eV^2$ 1.8 $\sin^2(2\theta_{23}) = 1$ robe superseded som 1.6 1.4 CHOOZ 1.2 90% CL Excluded 1 0.8 0.6 0.4 $\Delta m^2 > 0$ $\Delta m^2 < 0$ 0.2 0 10 -1 -2 10 sin²(20₁₃)

90% CL Sensitivity to $\sin^2(2\theta_{12})$

Neutral current events are unaffected by standard oscillations:

\rightarrow Can test for oscillations to sterile neutrino(s).

• Define "fraction of sterile mixing" \mathbf{f}_{s} to be fraction of disappearing v_{μ} 's that oscillate to sterile neutrino(s):

Far Detector data for this analysis is blinded. <u>Analysis is in progress</u>.

✤ About ~6% of our beam is made of muon anti-neutrinos:

Magnetic field allows us to separate neutrinos and anti-neutrinos on an event by event basis !

- Can perform an anti-neutrino oscillation analysis:
 - > CPT violating region for $\Delta \overline{m}_{32}^2$ still **largely unexplored**
 - Could reverse the horn current to get antineutrino beam.
- **\diamond** Can look for $\mathbf{v} \rightarrow \overline{\mathbf{v}}$ transitions:
 - > Predicted by some models beyond the SM.

- ✤ We had a successful year of data collection.
- Results from improved v_{μ} disappearance analysis with twice the data have just been released:

$$\left|\Delta m_{32}^2\right| = 2.38^{+0.20}_{-0.16} \times 10^{-3} \text{ eV}^2$$

 $\sin^2 2\theta_{23} = 1.00_{-0.08}$

→ The world's best measurement of $|\Delta m^2_{32}|$!

- New analyses continue in other areas such as v_{μ} disappearance, v_{e} appearance, sterile neutrino search, anti-neutrinos... among many others.
- Stay tuned for many other exciting measurements and discoveries !

Backup

• Overall energy scale set by Calibration Detector CALDET:

- Mini-MINOS detector at CERN
- > Measured $e/\mu/\pi/p$ response

In addition,

- Light injection system (PMT gain)
- Cosmic rays (strip to strip and interdetector)

Events/19 usec 1000 1000

0L O

2

4

Near Detector Events

- Multiple neutrino interactions per MI spill
- Events are separated based on topology and time information.

Near Detector Event Timing

programmed perhapsing providence prover the production of the providence

6

8

Time in Spill Gate (µ sec)

10

Far Detector Events

- ***** Beam neutrino interaction rate is $\sim 10^{-6}$ that of the near detector
- Beam events are identifiable in time with the spill trigger supplied from NuMI

MINOS PRELIMINARY

arXiv:0706.0437 [hep-ex]

 ★ Time of flight for 734,298.6 m ± 0.7 m: τ_{nominal} = 2,449,356 ns τ_{MINOS} = 2,449,228 ns ± 32 ns (stat) ± 64 ns (sys)

 ★ Neutrino Velocity:

 $(v-c)/c = (5.1 \pm 2.9) \times 10^{-5}$ (all at 68% C.L.)

Measuring the mass of neutrinos

