Lake Baikal Neutrino Experiment: Status and Perspectives

B. Shaybonov (JINR, Dubna) for the Baikal collaboration

Moscow, August 2007

Collaboration:

>Institute for Nuclear Research, Moscow, Russia >Irkutsk State University, Russia. > Skobeltsyn Institute of Nuclear Physics MSU, Moscow, Russia. >DESY-Zeuthen, Zeuthen, Germany. > Joint Institute for Nuclear Research, Dubna, Russia. Nizhny Novgorod State Technical University, Russia. St.Petersburg State Marine University, Russia. Kurchatov Institute, Moscow, Russia.

Baikal Neutrino Experiment

Milestones:

>1983: site / water studies; **R&D:** large area PMT, underwater technique, small physics setups. **Proposal for NT200 detector in Lake Baikal was** 1991: submitted **1993:** NT36 – the first underwater array started **1998:** NT200 – significant upgrade of NT36 2005 - 2006: NT200+ completed and is operating now >2006: Activity towards Gigaton Volume Detector in Lake **Baikal**

Baikal - Optical Properties

AC9 (trnasmissometer), used by the NEMO group ASP15 (Absorption, Scattering and Phase function meter), used by the BAIKAL group NIM A498 (2003) 231

Ice as a natural deployment platform

lce stable for 6-8-weeks/year:

Maintenance & upgrades

Test & installation of new equipment

Winches used for deployment

Quasar PM: d=37cm

Outline:

Conclusion

Physics Results (selected): NT200 1998-2002

Gigaton Volume Detector in Lake Baikal
a) NT200+ (10 Mt Detector) - intermediate stage to GVD
b) present and nearest future activities toward GVD

Atmospheric Muon-Neutrinos

- 1998-2002: 372 events.
- \rightarrow A higher statistics neutrino sample for Point-Source Search.
- MC: 385 ev. Expected (15%BG).

WIMP Neutrinos from the Center of the Earth

Detection area of NT-200 for vertically up-going muons detection (after all cuts)

WIMP Neutrinos from the Center of the Earth

Data analysis

Livetime – 1038 days (April 1998 – February 2003)

	Trigger: N _{hit} > 3	 3.45x10 ⁸	events detected
after	Cut 1	 90653	events selected
after	all Cuts	 48	events selected

Atm. neutrinos---73.1 events without oscillations(expectation)---56.6 events with oscillations

Atm. muons --- 3.6 events expected (background)

Systematic uncertainties: 24% Within stat. and syst. uncertainties 48 detected events are compatible with the expected background induced by atmospheric neutrinos with oscillations.

90% C.L. upper limit on the excess muon flux

Search for fast monopoles ($\beta > 0.8$)

$$N_{\gamma}(\lambda) = n^{2} (g/e)^{2} N_{\gamma\mu}(\lambda) = 8300 N_{\gamma\mu}(\lambda)$$

g = 137/2, n = 1.33
~E_{\mu}=10^{7} GeV

Event selection criteria:

hit channel multiplicity - $N_{hit} > 35$ ch, upward-going monopole - $\Sigma(z_i-z)(t_i-t)/(\sigma_t\sigma_z) > 0.45$ & $\theta > 100^{\circ}$

Background - atmospheric muons

Limit on a flux of relativistic monopoles: $\Phi < 4.6 \ 10^{-17} \ cm^{-2} \ sec^{-1} \ sr^{-1}$

90% C.L. upper limit on the flux of fast monopole (1003 livedays)

Diffuse Flux v_e , v_τ , v_μ Limit

Detection Volume vs. Energy

No events observed (24% system. err.) \rightarrow 2.5 evt exp.

The 90% C.L. "all flavour" limit (1038 days) for a γ =2 spectrum $\Phi_{\nu} \sim E^{-2}$ (20 TeV < E < 50 PeV),

and assuming $v_e:v_{\mu}:v_{\tau} = 1:1:1$ at Earth (1:2:0 at source)

 $E^2 \Phi_{\nu} < 8.1 \cdot 10^{-7} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$ (Baikal 2005)

 $E^2 \Phi_v < 2.2 \cdot 10^{-7} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$ (Muons AMANDA-II, 2007)

90% C.L. Limit via W-RESONANCE production ($E = 6.3 \text{ PeV}, \sigma = 5.3 \cdot 10^{-31} \text{ cm}^2$)

 $\Phi_{ve} < 3.3 \cdot 10^{-20} (cm^2 \cdot s \cdot sr \cdot GeV)^{-1}$ (Baikal 2005)

 $\Phi_{ve} < 5.0 \cdot 10^{-20} (cm^2 \cdot s \cdot sr \cdot GeV)^{-1}$ (AMANDA 2004)

Diffuse Flux Limits + Models

Astroprt. Phys. 25 (2006) 140

Ultimate goal of Baikal Neutrino Project:

Gigaton (km3) Volume Detector in Lake Baikal

Sparse instrumentation:

91 - 100 strings with 12 - 16 OMs (1300 - 1700 OMs) \rightarrow effective volume for >100 TeV cascades ~ 0.5 -1.0 km³ $\delta lg(E) \sim 0.1, \ \delta \theta_{med} < 4^{\circ}$

 \rightarrow detects muons with energy > 10 - 30TeV

2005: NT200+ - intermediate stage to Gigaton Volume Detector (km3 scale) is commissioned in Lake Baikal

Main physics goal:

Energy spectrum of all flavor extraterrestrial HE-neutrinos (E > 100 TeV)

Total number of OMs – 228 / 11 strings

Instrumented volume – 5 Mt (AMANDA II, ANTARES – 10 Mt)

Detection volume >10 Mt for E_v >10Pev _3

 high resolution of cascade vertex and energy —> neutrino energy

NT200+ Laser pulses as high-energy cascades

Laser intensity - cascade energy: $(10^{12} - 5 \ 10^{13}) \gamma$ /puls - (10 - 500) PeV

Ch.13 – 187 m far from laser A₁₃=140 ph.el. for 5 10^{13} γ /puls Sensitive vol./OM ~ 20 Mt

Laser coordinates reconstruction

PM selection for the km3 prototype string

Basic criteria of PM selection is its effective sensitivity to Cherenkov light which depends on Photocathode area × Quantum efficiency × Collection efficiency

Quasar-370 $D \approx 14.6''$ Quantum efficiency ≈ 0.15 Hamamatsu R8055? $D \approx 13''$?Quantum efficiency ≈ 0.20

Photonis XP1807 $D \approx 12''$ Quantum efficiency ≈ 0.24

PM selection: Underwater tests (2007)

4 PM R8055 (Hamamatsu) u 2 XP1807 (Photonis) were installed to NT200+ detector (April 2007).

4 PM: central telescope NT 200; 2 PM R8055: outer string, FADC prototype.

Relative effective sensitivities of large area PMs (preliminary results)

Smaller size (R8055, XP1807) tends to be compensated by higher photocathode sensitivities.

Relative effective sensitivities of large area PMs R8055/13", XP1807/12" and Quasar-370/14.6". Laboratory measurements (squares), in-situ tests (dots).

Prototype of FADC based system

2-channel FADC prototype was installed during expedition 2007

Purposes:

- optimal sampling time window
- dynamic range
- obtainable pulse parameter precision
- -algorithms for online data handling

- 1 channel

700

Examples of FADC pulses for different classes of events:

- 1. One p.e. noise hit
- A muon trigger 2. (multi-p.e.)
- 3. Backward illumination by a calibration laser

Prototype string for a km3 Baikal neutrino telescope

Installation of a "new technology" prototype string as a part of NT200+ (spring 2008)

- Investigation and in-situ tests of basic knots of future detector: optical modules, DAQ system, new cable communications.
- Studies of basic DAQ/Triggering approach for the km3-detector.
- Confrontation of classical TDC/ADC approach with FADC readout.

FADC unit is operating now in Tunka detector (astro-ph/0511229)

Basic features

- String lengths ~300 m
- String contains 12...16 OM
- Optical modules contains only PM and control electronics
- 12 bit 200 MHz FADC readout is designed as multi channel separate unit.
- Half-string FADC controllers with ethernet-interface connected to string PC unit
- String PC connected by string DSL-modem to central PC unit

Baikal – GVD **Schedule Milestones**

- R&D, Testing NT200+ 06-07
- **Technical Design** • 08
- 08-14

Fabrication (OMs, cables, connectors, electronics)

10-12 Deployment (0.1 - 0.3) km³ Deployment (0.3 – 0.6) km3 • 13-14 **Deployment (0.6 – 0.9) km3** • 15-16

Summary

1. The Baikal Telescope NT200 is in operation since 1998.

2. NT200 focuses on search for HE-diffuse neutrinos: A "Mtondetector" with only 100kt enclosed volume.

- Diffuse flux limits for 4 years (98-02) are challenging AGN-models.

3. NT200+ started data taking since April 2005:
 - NT200+ is tailored to diffuse cosmic neutrinos

- 5 Mton equipped volume; V_{det} > 10 Mton at 10 PeV

 \rightarrow sensitivity improvement by $\sim 4 \times$

4. R&D on Gigaton Volume Detector (km3 scale) started on the base of experience of NT200+ operation

First step to BAIKAL-GVD

