Search for direct CP-violation in charged K decays from NA48/2 experiment

XIII Lomonosov Conference

SPASIMIR BALEV Joint Institute for Nuclear Research

On behalf of NA48/2 Collaboration: Cambridge, CERN, Chicago, Dubna, Edinburgh, Ferrara, Firenze, Mainz, Northwestern, Perugia, Pisa, Saclay, Siegen, Torino, Vienna

Motivation

- Major milestones in CP-violation history:
 - **1964 Indirect** CP-violation in K⁰ (Cronin, Christenson, Fitch, Turlay)
 - **1988, 1999 Direct** CP-violation in K⁰ (NA31, E731, NA48, KTeV)
 - **2001** Indirect CP-violation in B⁰ (Babar, Belle)
 - **2004 Direct** CP-violation in B⁰ (Belle, Babar)

- Look for <u>direct CP-violation in K[±]</u>
 - K[±]→π[±]π⁺π⁻ (BR: 5.57%)
 - K[±]→π[±]π⁰π⁰ (BR: 1.73%)

[Only direct CP-violation in K[±] is possible – no mixing]

CP-Violation parameter A_a

Matrix element:

 $|M(\mathbf{u}, \mathbf{v})|^2 \sim 1 + g \cdot \mathbf{u} + h \cdot \mathbf{u}^2 + k \cdot \mathbf{v}^2 + \dots$

 $u = (s_3 - s_0)/m_{\pi}^2$ $v = (s_2 - s_1)/m_{\pi}^2$ $s_i = (P_K - P_{\pi i})^2, i=1,2,3 (3 = odd \pi)$ $s_0 = (s_1 + s_2 + s_3)/3$

 $\begin{array}{l} \underline{\textit{Measured parameters (PDG):}} \\ \texttt{K}^{\pm} \rightarrow \pi^{\pm} \pi^{+} \pi^{-} \rightarrow \texttt{g}^{+} = -0.2154 \pm 0.0035 \\ \texttt{K}^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0} \rightarrow \texttt{g}^{+}_{0} = 0.638 \pm 0.020 \\ \texttt{|h|,|k| << |g|} \end{array}$

CP-violation parameter:

<u>A_g ≠ 0 indicates direct CP-</u> <u>violation</u>

۲

Experiments and Theory

The experimental precision

until NA48/2 was at the level of **few 10**-3 in both decay modes

SM estimates vary within an order of magnitude (few 10⁻⁶...8x10⁻⁵).

Models beyond SM predict possible enhancements partially within the reach of NA48/2.

Asymmetry in decay widths

expected to be smaller than in Dalitz-plot slopes $(SM \sim 10^{-7}...10^{-6}).$

NA48/2 Beam Line

25.08.2007

S. Balev – Direct CP-violation in K[±]

NA48 detector

25.08.2007

NA48/2 data taking: completed

A view of the NA48/2 beam line

- 2003 run: ~ 50 days
- 2004 run: ~ 60 days
- Total statistics in 2 years:
 - **K**[±] $\rightarrow \pi^{-}\pi^{+}\pi^{\pm}$: > 3.10⁹
 - **K**[±] $\rightarrow \pi^0 \pi^0 \pi^{\pm}$: > 1.10⁸
 - Rare K[±] decays: BR's down to 10⁻⁹ can be measured

>200 TB of data recorded

Selected events properties

A_q measurement strategy

- ♦ $|M^{\pm}(u,v)|^2 \sim 1 + g^{\pm}u + hu^2 + kv^2 + ...$
- Project onto u axis (integration over v)
- For <u>equal K⁺ and K⁻ acceptance</u>, A_g can be extracted from a fit to the ratio R(u):

$$R(u) = \frac{N^{+}(u)}{N^{-}(u)} = n \frac{1 + g^{+} \cdot u + h \cdot u^{2} + \dots}{1 + g^{-} \cdot u + h \cdot u^{2} + \dots} \approx n \left[1 + \frac{\Delta g \cdot u}{1 + g \cdot u + h \cdot u^{2}} \right]$$

normalization
$$A_{g} = \Delta g/2g$$

- The normalization is a free parameter in the fit and Δg does not depend on it.
- For the "charged" mode a fit with linear function is suitable due to smallness of the slope g.
- U-calculation:
 - In "charged mode" \rightarrow only the magnetic spectrometer is used
 - In "neutral mode" \rightarrow only the calorimeter is used

Possible U-spectra ratios

Indeces of ratios correspond to:

- \rightarrow beamline polarity (U/D);
- → kaon deviation in spectrometer magnet field (S/J).

- In each ratio the charged pions are deflected towards the **same side** of the detector (*left-right asymmetry cancels out*)
 - In each ratio the event at the numerator and denominator are collected in **subsequent period** of data taking (**global time variations**)

25.08.2007

Apparatus asymmetries cancellation

$R = R_{US} * R_{UJ} * R_{DS} * R_{DJ} \longrightarrow \text{ fit with } f(u) = \mathbf{n} \cdot (1 + 4\Delta \mathbf{g} \cdot u / (1 + g \cdot u + h \cdot u^2))$

<u>3-fold cancellation of systematic biases:</u>

- global time-variable biases (K⁺/K⁻ simultaneously recorded);
- beam line biases (K⁺ beam up / K⁻ beam up etc.);
- **detector asymmetries** (K⁺ toward Saleve / K⁻ toward Saleve etc.).
- In addition, acceptance is defined respecting <u>azimuthal symmetry</u>:
 effects of permanent (irreversible) fields (Earth, vacuum magnetization) cancel
- The result is sensitive only to <u>time variations</u> of small asymmetry in experimental conditions with a characteristic time smaller than corresponding field-alternation period (beam week, detector day).

 \bigcirc

Δg by samples (in 10⁻⁴)

25.08.2007

Systematic uncertainties of Δg

$\mathbf{K} \rightarrow \pi \pi \pi \pi$
--

Systematic effect	Effect on $\Delta g \times 10^4$
Spectrometer alignment	±0.1
Spectrometer magnetic field	±0.3
Beam geometry / stray magn. field	±0.2
Accidental activity (pile-up)	±0.2
Resolution effects	±0.2
Total systematic uncertainty	±0.5
L1 trigger: uncertainty only	±0.3
L2 trigger: correction	-0.1±0.3
Total trigger correction	-0.1±0.4
Systematic & trigger uncertainty	±0.7

 $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$

Systematic effect		Effect on ∆g x 10 ⁴	
	Uc	alculation & fitting	< ± 0.1
LKr	LK	r nonlinearity	< ± 0.1
	Sh	owers overlapping	± 0.5
Spectrometer alignment and Momentum scale		< ± 0.1	
Accidental activity (pile-up)		± 0.2	
L1 trigger:		Charged signal	± 0.1
		Neutral signal	± 0.1
L2 trigger: Mass Box		± 0.3	
Total			± 0.6

A_q results

- The results have <u>10 times better precision</u> than the previous measurements;
- The errors are **dominated by statistics**;
- The results are consistent with the predictions of the **Standard Model.**

25.08.2007

25.08.2007

Theoretical predictions on A_q

Standard Model	L.Maiani, N.Paver '95	(2.3±0.6)x10 ⁻⁶
	A. Bel'kov '95	<4x10 ⁻⁴
	G.D'Ambrosio, G.Isidori '98	<10 ⁻⁵
	E.Shabalin '01	<3x10 ⁻⁵
	E.Gamiz, J.Prades, I.Scimemi '03	(-2.4±1.2)x10 ⁻⁵
	E.Shabalin '05 (La Thuile'05)	<8x10 ⁻⁵
SUSY	G.D'Ambrosio, G.Isidori, G.Martinelli	~10-4
New physics	E.Shabalin '98 [Weinberg model of extended Higgs doublet]	~4x10 ⁻⁴
	I.Scimemi '04	>3x10 ⁻⁵

Previous measurements of A_a

- ♦ Charged" mode K[±]→π[±]π⁺π⁻:
 - Ford et al. at BNL (1970): A_g = (-70 ± 53)·10⁻⁴; Statistics: 3.2M K[±];
 - HyperCP at FNAL, prelim. (2000): A_g = (22 ± 15_{stat} ± 37_{syst})·10⁻⁴; Statistics: 54M K[±];

[W.-S. Choong PhD thesis, LBNL-47014 Berkeley 2000.]

<u>"Neutral" mode K⁺ →π⁺π⁰π⁰ :</u>

Smith et al. at CERN-PS (1975): A_g = (19 ± 125)·10⁻⁴; Statistics: 0.12M K[±];

TNF at IHEP Protvino (2005): A_g = (2 ± 19)·10⁻⁴; Statistics: 0.62M K[±].

Instrumental asymmetries

- Charge-asymmetric effects due to
 - coupling of permanent magnetic fields with (alternating) spectrometer magnetic field;
 - global time instabilities (i.e. non-perfect inversion of spectrometer magnet) [IMPORTANT: SIMULTANEOUS BEAMS!]

cancel by averaging <u>Saleve</u> and <u>Jura</u> ratios:

$$R_{U} = R_{US} * R_{UJ} \implies \text{fit with } f(u) = \mathbf{n} \cdot (1 + 2\Delta_{U}u/(1 + gu + hu^{2}))$$

$$R_{D} = R_{DS} * R_{DJ} \implies \text{fit with } f(u) = \mathbf{n} \cdot (1 + 2\Delta_{D}u/(1 + gu + hu^{2}))$$

Effects of upper & lower beam geometry difference cancel by averaging <u>Up</u> and <u>Down</u> ratios:

 $R_{S} = R_{US} * R_{DS} \implies \text{fit with } f(u) = \mathbf{n} \cdot (1 + 2\Delta_{S}u/(1 + gu + hu^{2}))$ $R_{J} = R_{UJ} * R_{DJ} \implies \text{fit with } f(u) = \mathbf{n} \cdot (1 + 2\Delta_{J}u/(1 + gu + hu^{2}))$

 $(\Delta_U - \Delta_D)/2 \rightarrow$ up-down apparatus asymmetry Cancel in quadruple ratio $(\Delta_S - \Delta_J)/2 \rightarrow$ left-right apparatus asymmetry