

Recent results on Leptonic and Radiative B decays at BaBar [B→τν, b→(s,d)y]

> Tülay Çuhadar-Dönszelmann University of British Columbia On Behalf of the BaBar Collaboration

XIIIth Lomonosov Conference on Elementary Particle Physics August 23-29, 2007 Moscow State University, Moscow, Russia

Rare Decays: Physics Motivation

n

- The constrain on Unitarity Triangle due to tree level or $\Delta F=2$ processes
- Processes other than tree level can also be used for constraining the UT
- Flavour-Changing neutral current (FCNC) [b \rightarrow (s,d) γ , b \rightarrow sll, etc]
 - Forbidden at tree level, proceed at one loop
 - Suppressed (rare decays) due to the CKM matrix elements
 - Good place to search for non-SM
 - New particles in the loop can enhance the observables (Branching Fraction, Asymmetries, etc) predicted by the SM

Pure leptonic decays suppressed (CKM parameters - |v_{ub}| and helicity - lepton mass squared)

Leptonic Decays: $B^+ \rightarrow \tau^+ v$

Helicity suppressed pure leptonic B decay

- Measure |V_{ub}|, f_B
- $\tau: \mu: e = 1:5 \times 10^{-3}: 1 \times 10^{-7}$
- SM prediction : Br(B⁺→τ⁺ν) = (1.6±0.4) ×10⁻⁴

 $f_B = 0.216 \pm 0.022 \text{ GeV}, |V_{ub}| = (4.31 \pm 0.30) \times 10^{-3}$

First evidence by Belle (PRL 97, 251802 (2006))

$$Br(B^+ \to \tau^+ v) = (1.79^{+0.56}_{-0.49}(stat)^{+0.46}_{-0.51}(sys)) \times 10^{-4}$$
 (3.5 σ , 414 fb⁻¹)

Possibility to constrain physics beyond SM

2HDM model can enhance Branching fraction

$$Br(B \to \tau \nu) = Br(B \to \tau \nu)_{SM} \times \left(1 - \tan^2 \beta \frac{m_{B^{\pm}}^2}{m_{H^{\pm}}^2}\right)^2$$

Hou, PRD 48, 2342 (1993)

 W^+

 $Br(B^+ \to l^+ \nu_l)_{SM} = \frac{G_F^2}{8\pi} m_B m_l^2 \tau_B \left(1 - \frac{m_l^2}{m^2}\right)$

B⁺ $\rightarrow \tau^+ \nu$: Analysis Overview

Experimentally challenging to measure
 Final state contains two or more neutrinos

- Less kinematic constraints
- Method : Take the advantage of double B production in Y(4S)
 - Full or partial reconstruction of one B D⁰ ("Tag B")
 - $B^- \rightarrow D^0 l^- v X^0$ (Semileptonic Tag)
 - $B^- \rightarrow D^{0(*)}X^-$ (Hadronic Tag)
 - Attribute remaining charged and neutral particles to the other B ("signal B")

$B^+ \rightarrow \tau^+ \nu$: Tag Side

■ Hadronic: B⁻→D^{(*)0} X⁻ (~2700/ fb⁻¹)

- $D^{*0} \to D^{0} (\pi^{0}/\gamma)$ $D^{0} \to K^{+}\pi^{-}, K^{+}\pi^{-}\pi^{0}, K^{+}\pi^{-}\pi^{-}\pi^{+}, K_{S}\pi^{+}\pi^{-}$
- $X^+ = n_1 K^{\pm} + n_2 \pi^{\pm} + n_3 K_s + n_4 \pi^0$ ($n_1 + n_2 \le 5, n_3 \le 2, n_4 \le 2$)
- Full reconstruction of an event
 - Beam energy-substituted mass m_{ES}; Energy difference △E

$$m_{ES} \equiv \sqrt{E_{beam}^{*2} - p_B^{*2}} \sim m_B \qquad \Delta E \equiv E_B^* - E_{beam}^* \sim 0$$

- Backgrounds
 - Events not from BB, e⁺e⁻→qq (q=u,d,s,c,τ) "continuum"
 - Mis-reconstructed B candidates "combinatorial"

$B^+ \rightarrow \tau^+ \nu$: Signal Side

- Signal events $B^+ \rightarrow \tau^+ \nu$
 - $\tau^+ \to e^+ \nu \nu, \ \mu^+ \nu \nu, \ \pi^+ \nu, \ \pi^+ \pi^0 \nu$ (71%)
- Signal optimization for each mode separately
 - Particle ID, Charged track momentum, ρ quality ($\pi^+\pi^0$ mode),...
 - E_{extra} sum of neutral energy not associated with Tag B or Signal B (π^0 in $\tau + \rightarrow \pi^+ \pi^0 \nu$)
 - $E_{extra} < -160$, 100, 230 and 290 MeV (use s/(s+b)^{1/2} for optimization)

Background is estimated from side band region (0.4<E_{extra}< 2.4 GeV)

Mode	Expected background	Observed
$\tau \rightarrow e \nu \nu$	1.5 ± 1.4	4
$\tau \rightarrow \mu \nu \nu$	1.8 ± 1.0	5
$\tau \rightarrow \pi \nu \nu$	6.8 ± 2.1	10
$\tau \to \pi \pi^0 \nu$	4.2 ± 1.4	5
All	14.3 ± 3.0	24

B⁺ $\rightarrow \tau^+ \nu$: **Branching Fraction Results**

Signal yield is extracted from minimizing the likelihood-based estimator

Constraints from $B^+ \rightarrow \tau^+ \nu$

Inclusive $b \rightarrow s\gamma$ decays

- FCNC decay dominated by W-loop
- Not so rare decay , SM Br(b \rightarrow s γ) ~ O(10⁻⁴)
- Recent NNLO calculations ($E_{\gamma} > 1.6 \text{ GeV}$) Br(b→s γ) = (3.0-3.5)×10⁻⁴ (7-14)% uncertainties HFAG 2006 average Br(b→s γ) = (3.55±0.26)×10⁻⁴ (7%)

- Inclusive $b \rightarrow (s,d)\gamma$ is one of the cleanest decays for searching for NP
 - Look for any deviation in observables (branching fraction, CP asymmetry etc)

• γ spectrum is sensitive to mass and momentum of b quark inside B meson First Moment = $\langle E_{\gamma}^{B} \rangle \approx \frac{m_{b}}{2}$ Second Moment = $\langle (E_{\gamma}^{B})^{2} \rangle - \langle E_{\gamma}^{B} \rangle^{2} \approx \mu_{\pi}^{2}$

b \rightarrow **s** γ : **Previous Measurements**

Lepton

taq

Inclusive methods

- Request high energetic γ
- No X_s sensitivity to fragmentation
- Huge background from continuum events
 - $(e^+e^- \rightarrow q\overline{q}, q = u,d,s,c)$ with γ from ISR, π^0 or η
 - A lepton tag on the other B
- Need to translate to B rest frame

Semi-Inclusive methods

- Sum of 38 exclusive decays ($K\pi\pi$, $K_S\pi$, etc)
- Experimentally easier
- B is fully reconstructed (m_{ES} and ΔE)
- Photon in the B rest frame
- Large error due to form factors

b \rightarrow **s** γ : New technique

- Hadronic Tag method
- Fully reconstruct one B with hadronic decays:
 - $B \rightarrow D^{(*)}X$ (X: combination of π , and K with $|\Sigma q|=1$)
 - Flavour, charge and four momentum of signal B known
- Photon energy can be measured in B rest frame
 - Require a high energy photon
 - $(E_{\gamma} > 1.3 \text{ GeV in B frame})$ in other B (signal B)
- Small Tag efficiency (~0.3%)
- Photon energy spectrum and partial branching fractions in bins of photon energy
 - Number of events determined from fit to m_{ES} in E_γ bins

b \rightarrow **s** γ : Background Rejection

Main backgrounds

- **Photons originating from** π^0 , η , ρ
- Continuum background: suppress using Fisher discriminants
 - 12 inputs based on event shapes variables
- Selection optimized by maximizing s/(s+b)^{1/2}

b \rightarrow **s** γ : Photon Energy Spectrum

Photon energy spectrum

- b quark mass (m_b) and momentum inside the B meson (μ_π²)
- Input for |V_{u(c)b}| extraction from semileptonic B decays
- In two body decays, γ is monochromatic energy at b quark rest frame, due to "Fermi motion" the energy spectrum is smeared

b \rightarrow **s** γ **:** Moments & Partial Branching Fraction

- Photon energy moments from different methods agree well
- Next Step: Extract HQE parameters, combine the results and measure Asymmetries

	BF[E	$E_{\gamma} > E_{cut}$	$[]/10^{-6}$
$E_{\rm cut}({ m GeV})$	Value	$\sigma_{ m stat}$	$\sigma_{ m syst}$
1.9	366	+ 85	+ 59
2.0	339	± 64	± 47
2.1	278	± 48	± 34
2.2	248	± 38	± 26
2.3	207	± 30	± 19

 Statistical error dominant

I_TI

2.2

E_{cut} [GeV]

 $E_{\rm cut}({\rm GeV})$ Value

1.9

2.0

2.1

2.2

2.3

2.05

2.1

2.15

 $\sigma_{\rm stat}$

 $0.0334 \pm 0.0124 \pm 0.0263$

 $0.0265 \pm 0.0057 \pm 0.0203$

 $0.0142 \pm 0.0037 \pm 0.0111$

 $0.0092 \pm 0.0015 \pm 0.0061$

 $0.0059 \pm 0.0007 \pm 0.0073$

 $\sigma_{\rm syst}$

 Systematic error will be reduced with more data as well

b \rightarrow **s** γ : Branching Fraction

$B^{0} \rightarrow K^{*0}\gamma$: Time dependent CP Asymmetry

Interference between $B^0 \rightarrow K^{*0} (K_s \pi^0) \gamma$ (decay) and $B^0 \rightarrow \overline{B}^0 \rightarrow K^{*0} (K_s \pi^0) \gamma$ (mixing) is suppressed due to photon polarization

• Left-handed γ (B⁰) and right handed γ (B⁰)

 $P_{\pm}(\Delta t) = \frac{e^{-|\Delta t|/\tau_{B}}}{4\tau_{B}} \times \left[1 \pm S \sin(\Delta m_{d} \Delta t) \mp C \cos(\Delta m_{d} \Delta t)\right]$

- CP asymmetry measures the interference
 - SM : A_{CP} ~ -0.02
 (Ball and Zwicky, PLB 642, 478 (2006))

$$A_{CP}(t) = \frac{\Gamma(\overline{B}^{0} \to K_{S}\pi^{0}\gamma) - \Gamma(B^{0} \to K_{S}\pi^{0}\gamma)}{\Gamma(\overline{B}^{0} \to K_{S}\pi^{0}\gamma) + \Gamma(B^{0} \to K_{S}\pi^{0}\gamma)}$$

• Time evolution of the $B^0 \rightarrow K^{*0}\gamma$

 $= S \sin(\Delta mt) - C \cos(\Delta mt)$

S: CP violation in interference between decay and mixing C: Direct CPV

(Details on the method: Talk presented this morning by Jacques Chauveau - Measurements of CP violation in B decays and CKM parameters)

$B^0 \rightarrow K^{*0}\gamma$: Time dependent CP Asymmetry

• $\Delta t = t_{sig} - t_{tag}$

 t_{sig} : decay time $B^0 \rightarrow K_S \pi^0 \gamma \ (K_S \rightarrow \pi^+ \pi^-)$

 t_{tag} : B_{tag} (reconstructed from the rest of the tracks and clusters)

Exclusive b \rightarrow d γ **Decays**

- $\blacksquare B^{\pm} \rightarrow \rho^{\pm} \gamma, B^{0} \rightarrow (\rho^{0}, \omega) \gamma$
- Suppressed by |V_{td}/V_{ts}|² ~ 0.04 compared to b→sγ
 - SM: Br(B \rightarrow (ρ , ω) γ) ~ (0.9-1.8)×10⁻⁶

- Difference between |V_{td}/V_{ts}| from this decays and B_s mixing can indicate NP
- First observation by Belle on $B^0 \rightarrow \rho^0 \gamma$ decay with 5.2 σ significance (PRL 96, 221601 2006)
- BaBar measurements
 - Results at 316 fb⁻¹ presented here (PRL 98 151802 (2007))

Exclusive b \rightarrow d γ : Analysis & Results

Reconstruct $\rho^{+(0)} \rightarrow \pi^+ \pi^{0(-)} \quad \omega \rightarrow \pi^+ \pi^- \pi^0$

- Backgrounds (continuum, $B \rightarrow K^* \gamma$ and γ from π^0 , η) rejection
- Signal extraction from maximum 4D (5D) likelihood fit for ρ (ω)

Exclusive $b \rightarrow d\gamma$: V_{td}/V_{ts}

Branching fraction results from BaBar and Belle agree well

	$Br(B \rightarrow (\rho, \omega)\gamma)(10^{-6})$
BaBar	$1.25_{-0.24}^{+0.25}\pm0.09$
Belle	$1.13 \pm 0.20 \pm 0.11$

(Belle preliminary result presented at LP07 by M. Nakao, KEK)

Ratio of branching fraction can be used for the extraction of $|V_{td}/V_{ts}|$

$$\frac{Br(B \to (\rho, \omega)\gamma)}{Br(B \to K^* \gamma)} = \left| \frac{V_{td}}{V_{ts}} \right|^2 \left(\frac{1 - m_{\rho, \omega}^2 / m_B^2}{1 - m_{K^*}^2 / m_B^2} \right)^3 \varsigma^2 \left[1 + \Delta R \right]$$

 $\zeta = f_{K^*} / f_{\rho}$ f = form factor ΔR accounts for the annihilation diagram (not exist K*

 $\zeta = 1.17 \pm 0.09$ (Ball and Zwicky,JHEP 0604, 046 (2006)) $\Delta R = 0.1 \pm 0.1$ (Ali et al, PLB 595, 323 (2004)) puts BaBar isospin-averaged Br

 $\frac{V_{td}}{V_{ts}} = 0.200^{+0.021}_{-0.020} (\exp) \pm 0.015 (th)$

Exclusive b \rightarrow **d** γ **: Constraints on UT**

BaBar result:

CDF (PRL 97, 242003 (2006))

$\frac{V_{td}}{V}$	$= 0.2060 \pm 0.0007^{+0.0081}_{-0.0060}$
ts	

- Excellent agreement between two results
- The constraints on UT coming from two different physics is the same

http://utfit.roma1.infn.it/

Inclusive $b \rightarrow d\gamma$

- First inclusive search on $b \rightarrow d\gamma$
 - Sum of 7 exclusive decay modes
- Hadronic mass system
 - $1.0 < M(X_d) < 1.8 \text{ GeV/c}^2$
 - Seven final states corresponds to ~50% of the total X_d fragmentation in this mass range
- 0.6 < M(X_{s(d)}) < 1.8 GeV/c² region used as control sample for Br of B → K* γ (B→ $\pi^+\pi^-\gamma$, B⁺ → $\pi^+\pi^0\gamma$, B⁰→ $\pi^+\pi^-\pi^0\gamma$)
- 2D (m_{ES}, ∆E) Unbinned-likelihood fit used for signal and background yields extraction

 $\sum Br(B \to X_d \gamma) \Big|_{1.0 < X_d < 1.8 \text{ GeV/c}^2} = (3.1 \pm 0.9(stat)^{+0.6}_{-0.5}(sys) \pm 0.5(th)) \times 10^{-6}$

348 fb⁻¹, 178±53 signal events found

3.1 σ significance First evidence for b \rightarrow d γ outside B \rightarrow (ρ, ω) γ resonance

Next step: Extrapolate hadronic mass region, $|V_{td}/V_{ts}|$ extraction using **b** \rightarrow **s** γ ₂₂

Summary

- Rare decays are very interesting place to study new physics and test the constraints on Unitarity Triangle
- **B**⁺ $\rightarrow \tau^+ \nu$ signal seen and the sensitivity is approaching to SM rates
- **Recent progress in b \rightarrow s\gamma decays both**
 - Theory: NNLO

and

- Experimental (new approach)
 - Complementary to previous measurements (advantages direct information on photon B rest frame and better systematic control)
 - Different methods agree well
- No TDCP asymmetry is observed in $B \rightarrow K^{*0}\gamma$
- Exclusive $b \rightarrow d\gamma$ decays through $B \rightarrow (\rho, \omega)\gamma$
 - First evidence of $B^+ \rightarrow \rho^+ \gamma$ and first BaBar observation of isospin-averaged branching fraction
 - Excellent agreement on |V_{tdl}/V_{ts}| from decay and B_s mixing (Tevatron)
- First evidence on inclusive $b \rightarrow d\gamma$ transition in a M(X_d) outside ρ/ω resonances

Backup Slides

The BaBar Detector

- B factory experiment operated at SLAC since 1999
- Two asymmetric (electron & positron) beams at the center-of-mass energy of 10.58 GeV
- B mesons are produced in pairs: $e^+e^- \rightarrow \Upsilon(4S) \rightarrow BB$

The B Factory

- Total ~500 fb⁻¹ data recorded until now at the Υ(4S) cm energy
- In addition, ~10% of total data with an energy that is 40 MeV less than the nominal c.m. energy
 - Background from continuum event
- BaBar/PEPII programme to run until end of summer 2008

$B^+ \rightarrow \tau^+ v$: Signal Side

Same τ decay modes as in hadronic tag analysis

- E_{extra} sum of charged tracks and neutral clusters which are not associated signal B or Tag B
 - E_{extra} < 310 (e), 260 (μ), 480 (π), 250 (ππ⁰) MeV
- Background estimated E_{extra} sideband ($E_{extra} > 500 \text{ MeV}$) and verified with D⁰ mass sideband (4σ and 9σ) above and below D⁰ mass

Mode	Expected background	Observed
$\tau \rightarrow e \nu \nu$	44.3 ± 5.2	59
$\tau \rightarrow \mu \nu \nu$	39.8 ± 4.4	43
$\tau \rightarrow \pi v v$	120.3 ± 10.2	125
$\tau \to \pi \pi^0 \nu$	17.3 ± 3.3	18
All	221.7 ± 12.7	245

Semileptonic

Tag

Continuum Background

$\sigma(e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B})=1.05 \text{ nb}$

Events from continuum are jet-like while signal events are spherical

Non-resonant background "continuum" $e^+e^- \rightarrow q\bar{q} (q=u,d,s,c,\tau)$

Event shape variables

•
$$R_2 = H_2 / H_0$$
; $H_l = \sum_{i,j} |p_i| |p_j| P_l(\cos(p_i, p_j))$

 H_1 = Fox-Wolfram moments, P_1 = Legendre Polynomials $R_2 \sim 1$ (continuum), $R_2 \sim 0$ (BB events) Thrust , Sphericity, etc

 Combine the variables in Fisher discriminants, Neural network

Example for Fischer Discriminants

Inclusive b \rightarrow s γ Decays

Systematic Uncertainties:

$E_{ m cut}({ m GeV})$	Value	$\sigma_{ m stat}$	$\sigma_{ m syst}$	$\mathcal{B}(B \to X_{s'})$ Background Modelling	$\gamma)~(10^{-6}) \ M_{ES}~{ m fit}$ Parameterisation	Detector Response	$B o X_s \gamma$ Model	$b ightarrow d\gamma$ Subtraction
1.9	366	± 85	\pm 59	35	44	16	8	2
2.0	339	± 64	± 47	31	34	4	6	1
2.1	278	± 48	± 34	22	24	6	5	1
2.2	248	± 38	± 26	14	18	8	5	1
2.3	207	± 30	± 19	10	14	1	5	1

Exclusive b \rightarrow d γ **Decays**

Comaprison between BaBar and Belle results

 $\begin{array}{ll} \mathsf{Br}(\mathsf{B} \to (\rho, \omega) \gamma)(10^{-6}) \\ \mathsf{BaBar} & 1.25^{+0.25}_{-0.24} \pm 0.09 \\ \mathsf{Belle} & 1.32^{+0.34+0.10}_{-0.31-0.09} \\ \mathsf{Average} & 1.28^{+0.20}_{-0.19} \pm 0.06 \end{array}$

B+→(e+,μ+)ν

SM prediction

- $B(B^+ \rightarrow e^+ v) \sim 10^{-12}$
- $B(B^+ \rightarrow \mu^+ \nu) \sim 4 \times 10^{-7}$
- Search done using 209 fb⁻¹
- No events observed in either mode
- Expected background events
 e: 0.23 μ: 0.12
- @90% CL B(B⁺→e⁺v) < 7.9×10⁻⁶ B(B⁺→ $\mu^+\nu$) < 6.2×10⁻⁶

arXiv:hep-ex/0607110v1

 $B^+ \rightarrow I^+ \nu \gamma$

Due to photon in the final state, no helicity suppression

- Branching fraction is enhanced
- SM prediction: (1-5)×10⁻⁶ (Korchemsky, Pirjol, and Yan, PRD 61, 114510 2000)

$$\Gamma(B^+ \to l^+ \nu \gamma) = \alpha \frac{G_F^2 |V_{ub}|^2 m_B^5}{288\pi^2} f_B^2 \left(\frac{Q_u}{\lambda_B} - \frac{Q_b}{m_b}\right)$$

 $\Lambda \sim B$ light cone distribution amplitude

- 90% CL (210.5 fb⁻¹ <u>0704.1478 [hep-ex]</u>)
 - $\blacksquare \quad B(B \rightarrow \mu \nu \gamma) < 2.1 \times 10^{-6}$
 - $B(B \rightarrow ev\gamma) < 2.8 \times 10^{-6}$
 - $\blacksquare B(B \rightarrow V\gamma) < 2.3 \times 10^{-6}$

Experimental sensitivity reaching to theoretical prediction

B⁰→**I**+I⁻γ

- First search on B⁰→I⁺I⁻γ (I=e, μ) FCNC process
 - Main contributions: photon emission from one of the initial quark
 - Not helicity supressed, still Br is small
 - SM prediction: Br ~ O(10⁻¹⁰)
- m_{ES} and ΔE for two leptons and a photon
- Backgrounds: QED process, J/ Ψ , Ψ (2S), π^0 , continuum.
- 292 fb⁻¹, limits are set at 90% CL

arXiv:0706.2870 [hep-ex], submitted to PRL

	N_{obs}	N_{bkg}	$\mathcal{E}(\%)$	$Br(B^0 \rightarrow l^+ l^- \gamma)$
е	1	$1.75 \pm 1.38 \pm 0.36$	7.4 ± 0.3	1.2×10^{-7}
μ	1	$2.66 \pm 1.40 \pm 1.58$	5.2 ± 0.2	1.5×10^{-7}

Time Dependent Asymmetry

