

Rare kaon and hyperon decays in NA48 experiment

Natalia Molokanova

Joint Institute for Nuclear Research

on behalf of the NA48/2 Collaboration

Cambridge, CERN, Chicago, Dubna, Edinburgh, Ferrara, Firenze, Mainz, Northwestern, Perugia, Pisa, Saclay, Siegen, Torino, Vienna

13th Lomonosov Conference on Elementary Particle Physics Moscow, Russia, August 23-29, 2007

- $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma$ decay
 - formalism
 - experimental status
 - NA48/2 measurement
- $K^{\pm} \rightarrow \pi^{\pm} e^{+} e^{-} \gamma$ decay
 - NA48/2 measurement
- Decay asymmetries of $\Xi^0 \rightarrow \Lambda \gamma$ and $\Xi^0 \rightarrow \Sigma^0 \gamma$
 - NA48/1 measurement
- $\Xi^0 \rightarrow \Lambda^0 e^+ e^- decay$
 - NA48/1 measurement

✓ Primary proton beam → p = 400 GeV/c (7×10¹¹ ppp)
✓ Simultaneous K⁺/K⁻ beams → p = (60 ± 3) GeV/c
✓ K⁺/K⁻ beam flux → 3.8 (2.6) Ø 10⁷ ppp

- Magnetic spectrometer (4 DCHs): $\Delta p/p = 1.0\% + 0.044\%*p$ [GeV/c] $\pi^{+}\pi^{-}\pi^{\pm}$ mass resolution about 1.7 Mev/c
- Liquid Krypton EM calorimeter (LKr) High granularity, quasi-homogenious; $\Delta E/E = 3.2\%/\sqrt{E} + 9\%/E + 0.42\%[GeV]$ $\sigma_x, \sigma_y \sim 1.5 \text{ mm}$ $\pi^0 \pi^0 \pi^{\pm}$ mass resolution about 1.4 Mev/c
- Hodoscope fast trigger; precise time measurement (150ps).
- Hadron calorimeter, muon veto counters, photon vetoes.
- LV1 trigger: hodoscope and DCH multiplicity LV2 trigger: on-line data processing

$K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma$. Decay formalism.

$$\frac{d\Gamma^{\pm}}{dW} \simeq \left(\frac{d\Gamma^{\pm}}{dW}\right)_{IB} \left[1 + 2\left(\frac{m_{\pi}}{m_{K}}\right)^{2} W^{2} |E| \cos((\delta_{1} - \delta_{0}) \pm \phi) + \left(\frac{m_{\pi}}{m_{K}}\right)^{4} W^{4} (|E|^{2} + |M|^{2})\right]$$

$$INT$$

$$DE$$

$$DE$$

 Γ^{\pm} depends on 2 variables (T^*_{π} and W) that can be reduced to only one integrating over T^*_{π}

IB, **DE** and **INT** components can be separated kinematically using the Lorentz invariant variable *W* which is defined as follows:

$$W^2 = \frac{(P_K^* \cdot P_\gamma^*)(P_\pi^* \cdot P_\gamma^*)}{(m_k m_\pi)^2}$$

 $\mathbf{P}^{*}_{\ \mathbf{K}} = 4$ -momentum of the K[±] $\mathbf{P}^{*}_{\ \pi} = 4$ -momentum of the π^{\pm} $\mathbf{P}^{*}_{\ \gamma} = 4$ -momentum of the γ

N.Molokanova / 13th Lomonosov Conference, 25.08.2007

Two types of contributions: Electric (J=l±1) dipole (E) Magnetic (J=l) dipole (M)

Electric contributions are dominated by the Inner Bremsstrahlung term

DE shows up only at order O(p^4) in CHPT: is generated by both E and M contributions

INT term is sensitive to **E** only

Inner Bremsstrahlung(IB) : $(2.75\pm0.15)\cdot10^{-4}$ PDG (2006) (55<T^{*}_π<90 MeV)

Direct Emission (DE) : $(4.4\pm0.7)\cdot10^{-6}$ PDG (2006) (55<T^{*}_π<90 MeV)

Interference (INT) : not yet measured

$K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma$. Exp results for DE and INT.

	Experiment	Year	# Events	BR(DE) \times 10 ⁶	All the measurements have been
	E787 [20]	2000	19836	$4.7 \pm 0.8 \pm 0.3$	performed:
	E470 [21]	2003	4434	$3.2 \pm 1.3 \pm 1.0$	✓in the T* region 55-90 MeV to avoid
_	E787 [22]	2005	20571	$3.5 \pm 0.6^{+0.3}_{-0.4}$	$\pi^{\pm}\pi^{0}$ and $\pi^{\pm}\pi^{0}\pi^{0}$ background
_	E470 [23]	2005	10154	$3.8 \pm 0.8 \pm 0.7$	
1					\checkmark assuming INT = 0

N.Molokanova / 13th Lomonosov Conference, 25.08.2007

➢In flight Kaon decays

- ➢Both K⁺ and K[−] in the beam (possibility to check CP violation)
- >Very high statistics (220k $\pi^{\pm}\pi^{0}\gamma$ candidates, 124k used in the fit)
- >Enlarged T_{π}^* region in the low energy part (**0** <**T** $_{\pi}^*$ < **80 MeV**)
- Negligible background contribution < 1% of the DE component</p>
- Good W resolution mainly in the high statistic region
- >More bins in the fit to enhance sensitivity to INT
- **>Order ‰** γ mistagging probability for IB, DE and INT
- Fit with free interference term

$K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma$. Enlarged T^{*}_{π} region.

Use standard region $55 < T_{\pi}^* < 90$ MeV as safe choice for BG rejection

But.... region <55 MeV is the most interesting to measure DE and INT

This measurement is performed in the region

$0 < T_{\pi}^{*} < 80 \text{ MeV}$

to improve statistics and sensitivity to **DE**

N.Molokanova / 13th Lomonosov Conference, 25.08.2007

Event selection

- requirements on tracks
- requirements on LKR clusters
- effort into γs pairing
- requirements on the event closure
- >All **physical BG** can be explained in terms of $\pi^{\pm}\pi^{0}\pi^{0}$ events only
- Very small contribution from accidentals is neglected
- γ mistagging probability (a self background) is order of ‰

K^{\pm} → $\pi^{\pm}\pi^{0}\gamma$. W shapes from MC.

3 MC data samples for the 3 contributions to the decay

K^{\pm} → $\pi^{\pm}\pi^{0}\gamma$. Data-MC comparison.

IB contribution is very well reproduced by MC

 $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma$. Fit results.

2004 data set: x4 # events and lower systematic due to trigger

✓ For comparison with previous experiments the fraction of DE has been also measured, with:

 $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma$. Comparison.

- INT = 0
- 55<T*_π<90 MeV

 K^{\pm} → $\pi^{\pm}e^{+}e^{-}\gamma$. BR measurement.

Never observed before

Naïve estimation of the BR: BR($K^{\pm} \rightarrow \pi^{\pm} e^{-\gamma}$)=BR($K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$)·2 $\alpha \sim 1.6 \cdot 10^{-8}$

Theoretical expectation (χ Pt based, Gabbiani 99): BR(K[±] $\rightarrow \pi^{\pm}e^{+}e^{-}\gamma$)=(0.9-1.6)·10⁻⁸

Event sample: 92 candidates events with

1±1 accidental background 5.1±1.7 physical background

Normalization channel:

 K^{\pm} -> $\pi^{\pm}\pi^{0}_{D}$: 14M events

 $BR(K^{\pm} \rightarrow \pi^{\pm} e^{+} e^{-} \gamma) = (1.27 \pm 0.14_{stat} \pm 0.05_{sys}) \cdot 10^{-8}$

NA48/2 Preliminary

Radiative Hyperon decays from NA48/1

Radiative Hyperon decays from NA48/

- same detector as NA48/2
- neutral beam: mainly K_s, Ξ^0 , Λ

$\Xi^0 \rightarrow \Lambda \gamma$ decay asymmetry (I)

N.Molokanova / 13th Lomonosov Conference, 25.08.2007

$\Xi^0 \rightarrow \Lambda \gamma$ decay asymmetry (II)

 $\Xi^0 \rightarrow \Sigma^0 \gamma$ decay asymmetry

□ Same method as for $\Xi^0 \rightarrow \Lambda \gamma$, but one additional decay $\Sigma^0 \rightarrow \Lambda \gamma$ □ **13068** $\Xi^0 \rightarrow \Sigma^0 \gamma$ events selected □ ≈ 3% background

N.Molokanova / 13th Lomonosov Conference, 25.08.2007

Never observed before

Naïve estimation of the BR: BR($\Xi^0 \rightarrow \Lambda e^+e^-$)=BR($\Xi^0 \rightarrow \Lambda \gamma$)· $\alpha \sim 8.8 \cdot 10^{-6}$

Theoretical expectation (QED based, Bernstein 65): BR($\Xi^0 \rightarrow \Lambda e + e^-$) = (6.4-7.3)·10⁻⁶

Event sample: 412 candidates events with 7±5 accidental background 8±3 physical background Normalization channel:

 $\Xi \rightarrow \Lambda \pi^0_{\ D}$: 30K events

BR(
$$\Xi \rightarrow \Lambda ee$$
) =(7.7±0.5stat±0.4syst)·10⁻⁶
 $\alpha(\Xi \rightarrow \Lambda ee)$ = -0.8 ± 0.2

- > NA48/2 recent results in charged radiative Kaon decays
 - first evidence of non 0 INT term in $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma$
 - first measurement of $K^{\pm} \rightarrow \pi^{\pm} e^{+} e^{-} \gamma$ BR

- NA48/1 recent results in radiative hyperon decays
 - new measurement of $\Xi^0 \rightarrow \Lambda \gamma$ and $\Xi^0 \rightarrow \Sigma^0 \gamma$ decay asymmetries
 - first measurement of the Ξ⁰→Λe⁺e⁻ BR and decay asymmetry

K^{\pm} → $\pi^{\pm}\pi^{0}\gamma$. Selection.

i

Track Selection

- # tracks = 1
- $P_{\pi+} > 10 \text{ GeV}$
- E/P < 0.85
- No muon veto hits
- 0 MeV < T_{π}^* < 80 MeV

γ Selection

 $\cdot N_{\gamma} = 3$ (LKr clusters well separated in time)

•Min γ energy > 3 GeV (>5 for the fit)

 γ Tagging Optimization

- CHA and NEU vertex compatibility
- Only one compatible NEU vertex

BG Rejection

- COG < 2 cm
- Overlapping γ cuts

•
$$|M_{K}-M_{KPDG}| < 10 \text{ MeV}$$

Two independent determination of K decay vertex: 1) charged vertex Z_V (CHA) using K and π flight directions (DCH) 2) neutral vertex Z_V (NEU) imposing π^0 mass to $\gamma \gamma$ pairs (LKr)

N.Molokanova / 13th Lomonosov Conference, 25.08.2007

Overlapping γ rejection

Overlapped gamma events are a very dangerous BG source: - M_k, and COG cut automatically satisfied!

- Releasing the T^*_{π} cut they can give sizable contribution

Powerful rejection using the NA48 calorimeter - high granularity (2x2 cm cells)

- good Z vertex resolution

Multi step algorithm looped over clusters:

1) Split 1 out of the 3 clusters in two γ of energies: $\epsilon \gamma_1 = x E_{CL}$ $\epsilon \gamma_2 = (1-x) E_{CL}$ \rightarrow get 4 γ and reconstruct the event as a $\pi^{\pm} \pi^0 \pi^0$.

2) Compute $Z_V(x)$ pairing the gammas and extract x imposing: $Zv(\pi^0_1)=Zv(\pi^0_2)$ (The two π^0 come from the same K!)

 $Zv(\pi^0)$

 $Zv(\pi^0)$

3) Use x in the $Zv(\pi^{0}_{2})$ to get the real $Z_{V}(\text{neu})$ If $|Zv(CHA)-Zv(\text{neu})| < 400 \text{ cm} \rightarrow \text{the } \gamma \text{ are really overlapped} \rightarrow \textbf{REJECT}$

Mistagged gamma events behave like BG because they can induce fake shapes in the W distribution.

In fact due to the slope of IB W distribution they tend to populate the region of high W simulating DE events.

- 2 steps rejection of mistagged events :
- 1. Compatibility of charged and neutral vertices (2.5% mistagging)
- 2. Distance between best and second best neutral vertices > xx cm

The mistagging probability has been evaluated in MC as a function of the mistagging cut to be 1.2% at 400 cm

Very similar mistagging probabilities for **IB** and **DE** events

