

The $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ experiment at CERN P326 - NA48/3 - NA62

Yu. Potrebenikov JINR, Dubna 13th Lomonosov Conference on Elementary Particle Physics, Moscow, August 23-29, 2007

The $K^+ \rightarrow \pi^+ v \bar{v}$ decays: a clean test of SM sensitive to new physics

■ Flavor Changing Neutral Current loop process: s→d coupling and highest CKM suppression

• Very clean theoretically: short distance contributions dominate, hadronic matrix element can be related to measured quantities $(K^+ \rightarrow \pi^0 e^+ \nu)$.

SM predictions (uncertainties from CKM elements): $BR(K^+ \rightarrow \pi^+ \nu \nu) \approx (1.6 \times 10^{-5}) |V_{cb}|^4 [\sigma \eta^2 + (\rho_c - \rho)^2] \rightarrow (8.0 \pm 1.1) \times 10^{-11}$ $BR(K_L \rightarrow \pi^0 \nu \nu) \approx (7.6 \times 10^{-5}) |V_{cb}|^4 \eta^2 \rightarrow (3.0 \pm 0.6) \times 10^{-11}$

Sensitive to New Physics

Present measurement (E787/949): BR(K⁺ $\rightarrow \pi^+\nu\nu$) = 1.47 $^{+1.30}_{-0.89} \times 10^{-10}$ (3 events)

Effects of new physics on $K \rightarrow \pi v \bar{v}$ decays

Setting the bar for future $K \rightarrow \pi v \overline{v}$ experiments

Proposal to Measure the Rare Decay $K^+ \rightarrow \pi^+ v \bar{v}$ at the CERN SPS (P326)

CERN-SPSC-2005-013 SPSC-P-326

CERN, Dubna, Ferrara, Florence, Frascati, Mainz, Merced, Moscow, Naples, Perugia, Protvino, Pisa, Rome, Saclay, San Luis Potosi, Sofia, Triumf, Turin

Schedule

Located in the same hall of NA48

- September 2005: presented at CERN SPSC
- December 2005: R&D endorsed by CERN Research Board
- Start of the Gigatracker project
- Start of test beams at CERN in 2006
- 2007: prototypes construction and test at CERN and Frascati beams
- 2008 2010: Technical design and construction
- 2011 Start of data taking

Base of the NA62 (NA48/3)

$\mathcal{O}(100) K^+ \rightarrow \pi^+ \nu \nu \text{ events}$

- 1) **<u>Physics:</u> BR(SM)** = 8×10⁻¹¹
- Acceptance 10%
- K decays ~10¹³
- Kinematical rejection

- Veto and particle ID
- 2) <u>Budget:</u> ...
- Be pragmatic

~ 10% background

- Kaon decay in flight technique
- Intense proton beam from SPS
- High energy K (P_K = 75 GeV/c)
 Kaon ID
- Kaon 3-momentum: beam
- Pion 3-momentum: spectrometer
- γ/μ detection: calorimeters
- Charged veto: spectrometer
- $\pi/\mu/e$ separation: RICH
- Use as much as possible the existing NA48 infrastructures

Backgrounds

Since matically constrained Since with the second strain of the second

92% of total background

 Allows us to define a signal region
 K⁺→ π⁺π⁰ forces us to split it into two parts (Region I and Region II)

Not kinematically constrained

8% of total background

Span across the signal regionRejection must rely on veotes

Largest background rejection

Largest BR: 63.4% Need ~10⁻¹² rejection factor

- Kinematics 10⁻⁵
- Muon Veto: 10⁻⁵ > MAMUD
- Particle ID: 5×10-3 => RICH

 $\mathbf{K}^+ \rightarrow \pi^+ \pi^0 \ (\mathbf{K}_{\pi 2})$

2nd largest BR: 20.9% Need ~10⁻¹² rejection factor

- Kinematics: 5×10⁻³
- Photon Veto: 10⁻⁵ per photon

Assuming the above veto inefficiencies and an acceptance of 10%, a S/B > 10 is obtained if $\Delta m_{miss}^2 \sim 8 \times 10^{-3} \text{ GeV}^2/\text{c}^4$

Resolution requirements:

 $P_{\pi} \rightarrow \langle 1 \%, P_{K} \rightarrow 0.3 \%, \theta_{K\pi} \rightarrow 50-60 \mu rad$

Layout of the experiment

The Tracking system: Gigatracker

The Gigatracker (*i.e.* the beam tracker)

- 3 Si pixel stations across the 2nd achromat: size 60 × 27 mm²
- Rate: 760 MHz (charged particles) ~60MHz/cm²
- Good space resolution to match the downstream tracker resolution
- Low X/X₀ not to spoil the beam
- Excellent time resolution needed for K+/π+ association: σ(t)~200 ps per station
- Readout chip: 1st MPW in 0.13µm technology is ready to test (results by September)

Si diode irradiation tests

- Prototype wafers (200µm thick) produced by itc-IRST using ALICE pixel layout
- 3 mm × 3 mm and 7 mm × 7 mm test-diodes
- Test diodes irradiated with n and p (Ljubljana, CERN)
- Fluences: 1E12 to 2E14 1MeV n cm⁻² (range P326)
- Pre and post irradiation measurements (annealing) to study diode characteristics

300×300 µm pixels $\begin{pmatrix} \sigma(P_K)/P_K \sim 0.22\% \\ \sigma(\theta_K) \sim 16 \mu rad \end{pmatrix}$

Readout chip bump-bonded on the sensor (0.13 µm technology)

200 Si µm sensor + 100 Si µm chip

The Tracking system: Double Spectrometer

The Double Spectrometer (*i.e.* the downstream tracker)

6 chambers with 16 layers of straw tubes each

- Rate: ~ 45 KHz per tube (max 0.8 MHz)
- Low X/X_0
- In vacuum, X/X₀~0.1% per view
- Good space
- & angle resolution
- 130 µm per hit

Redundant p measurement

Veto for charged particles
 5 cm radius beam hole displaced in the bending plane

Straw prototype

Design, construction and test of a Straw prototype (Dubna, CERN)

- Chosen technology: ultrasound welded gilded mylar tube (36 μm, D=10 mm, L=2.3 m)
- 48 straw prototype has been produced in Dubna
- Tests on gas leakage
- Tests on tube expansion in vacuum
- Prototype assembled & cosmic ray tests

October 2007: Prototype integration in NA48 set-up and test on a beam

TINE

The Particle Identification system: CEDAR

The CEDAR (*i.e.* the kaon ID)

CEDAR: existing differential Cerenkov counter at CERN to be placed on the beam

- Tagging the kaon to keep the beam background under control
- Minimal material budget
- Good time resolution
- CEDAR W-type filled with Ne tested at CERN in November 2006, using a 100 GeV hadron beam with 10⁵ – 10⁷ ppp (CERN, Firenze, Perugia).

<u>Plan:</u> to test of fast photomultipliers using Cerenkov light.

The Particle Identification system: RICH

The RICH (*i.e.* the pion ID)

18 m long tube (2.5 m diamater) filled with Ne @ 1 atm, two 17m focal length mirrors

 >3σ pion/muon separation @ 35 GeV/c (13 GeV/c threshold for π) High granularity (2000 PMTs) Small pixel size (18 mm PMT)

 Time resolution 100 ps (track timing)

Phototubes with very good σ(t)

 Velocity spectrometer (redundancy)

RICH prototype

Design, construction and test of a RICH prototype (CERN, Firenze, Perugia)

- Full length prototype (17 m, 0.6 m diamater, stainless steel tube at CERN)
- Mirror built, delivered and under test in Firenze
- Endcap with 96 Hamatsu PMs readout through Winston's cones
- PMs tested at SPS (2006) and Firenze (with laser)
 - Measured Full Width Half Maximum (FWHM) per single γ per phototube: **390ps** (150 ps electronics and 110 ps laser included)

 November 2007: prototype integration into the NA48 set up and test with beam

The Veto system

Photon vetoes

- Large angle (10, 50 mrad): Rings calorimeters (in vacuum)
- Rate: ~4.5 MHz (μ) + ~0.5 MHz (γ)
- 10^{-4} inefficiency for E_{γ} in 0.05,1 GeV
- 10^{-5} inefficiency for $E_{\gamma} > 1$ GeV
 - Medium angle (1, 10 mrad): LKr calorimeter
- Rate: ~8.7 MHz (μ)+~4 MHz (γ))+~3 MHz
 (π)
- 10^{-4} inefficiency for E_{γ} in 1,5 GeV
- 10^{-5} inefficiency for $E_{\gamma} > 5$ GeV
 - Small angle (<1 mrad): Shashlik technology</p>
- Rate: 0.5 MHz (μ)
- 10⁻⁵ inefficiency (high energy photons)

Muon veto

- Extruded scintillator lead sampling calorimeter 6 m long + magnet for beam deflection
- Rate: ~7 MHz (μ)+~3 MHz (π)
- 10⁻⁵ inefficiency for μ detection
- Deviate the beam out from the SAC

20 X/X₀ Lead scintillator tiles or Lead scintillator fibers (KLOE-like)

New Readout

em/hadronic cluster separation. Sensitivity to the MIP

5Tm B field in a 30×20cm² beam hole

Large angle Photon Vetoes

KLOE-type lead/scintillating fiber: prototype constructed in Frascati

1 mm diameter scintillating fibers, 0.5 mm thick lead foils.

Readout granularity: 18 cells
 Very well known and tested technology
 Under test at the Frascati BTF

Lead scintillator tiles

- Studies of the efficiency of detectors built with this technology available
- Fermilab prototype under test at BTF
- Outgassing tests performed at CERN on detectors built with same technology: they can be placed in the vacuum of the decay region (10⁻⁶ mbar)

Large angle Photon Vetoes tests

)/0

Test beam activity at BTF in Frascati (Frascati, Napoli, Pisa, Roma)

- e⁻ beam (300-500 MeV/c)
- Both calorimeter prototypes under test
- 1st step: test with electrons
- 2nd step: test with photons
- Test beam periods: March, April, June 2007 <u>The main result</u>: both prototypes show good characteristics: inefficiency ~ 10⁻⁵ for E=500, 200-350 MeV (10⁻⁴ for LG due to statistics). Good energy resolution is obtained for fiber

calorimeter:

$$\frac{\sigma(E)}{E} = \frac{5.88\%}{\sqrt{E(GeV)}} \oplus 4.63\%$$

It is necessary to understand the beam background and to make <u>calibrations of the prototypes</u>

Х

LKr calorimeter

- > 10 GeV, $\eta < 10^{-5}$ confirmed
- < 10 GeV analysis in progress</p>

X LKr cm

Consolidation of the readout

- Custom boards (FPGA based) sending data directly to PC Farm
- Test of the new electronics in 2007 NA48 run

Preliminary sensitivity studies

Simulation of the P-326 apparatusSimulation of the P-326 apparatusRegion I and IIMomentum range: $15 < P_{\pi} < 35$ GeV/cAgainst muonsRICH operational reasonsPlenty of energy in photon vetoes

Acceptance (60 m fiducial volume):

- Region I: 4%
- Region II: 13%
- Total: **17%**

To be reduced because of losses due dead time, reconstruction inefficiencies...

Acceptance ~ 10% is achievable

Analysis: background rejection

Events/year	Total	Region I	Region II
Signal (acc=17%)	65	16	4 9
$K^+ \rightarrow \pi^+ \pi^0$	2.7	1.7	1.0
$K^{*}\!\!\rightarrow\!\!\mu^{*}\nu$	1.2	1.1	<0.1
$K^+ \rightarrow e^+ \pi^+ \pi^- \nu$	~2	negligible	~2
Other 3 – track decays	~1	negligible	~1
$K^+ \rightarrow \pi^+ \pi^0 \gamma$	1.3	negligible	1.3
$K^{+} \!\!\!\! \rightarrow \!$	0.5	0.2	0.2
K ⁺ →e ⁺ (μ ⁺) π ⁰ ν, others	negligible	-	-
Total bckg.	<9	3.0	<6

S/B ~ 8 (Region I ~5, Region II ~9)

A possible scheme:

Level	L0 "hardware"	L1-L2 "software"
Input	~10 MHz	1 MHz
Output	1 MHz	O(KHz)
Implementation	Dedicated hardware	TDAQ farm
Actions	RICH minimum multiplicity, Muon vetoing, LKr vetoing	L1 = single sub- detectors L2 = whole event

Main work on possible solutions for the L0 hardware

- TELL-1 board (LHCb) based implementation for all non FADC sub detectors
- Design of a new 100 ps TDC daughter-card (RICH, Straws, MAMUD,...)
- Two prototypes under study (Mainz and Pisa)

P-326 Kaon Flux ~100 times NA48/2 Kaon Flux

Other physics opportunities can be addressed:

- Lepton flavor violation (started with a run 2007):
 - $\checkmark K_{e2}/K_{\mu2\prime}K^+ \rightarrow \pi^+\mu^+e^-, K^+ \rightarrow \pi^-\mu^+e^+$
- Search for new low mass particles:
 - ✓ $K^+ \rightarrow \mu^+ N$ (light RH neutrinos)
 - $\checkmark \quad \mathbf{K}^{+} \rightarrow \pi^{+} \pi^{0} \mathbf{P} \text{ (pseudoscalar sGoldstino)}$
- Hadron spetroscopy
- ...

Conclusions

- To search for new physics using rare Kaon decays <u>P-326</u> <u>experiment</u> is proposed and prepared for measurement of the Br($K^+ \rightarrow \pi^+ v \bar{v}$) with a ~10% accuracy (& for other physics opportunities)
- <u>General design</u> is mostly defined. Overall simulation and performances are under review.
- <u>The R&D program</u> is well advanced: construction of detector prototypes and tests are in progress (in some cases - completed). Important results should be obtained by the end of 2007
- The new experiment should be able to reach a <u>~10⁻¹²</u> <u>sensitivity per event</u> at an existing machine and employing the infrastructures of an existing experiment.