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1 Introduction

Lee–Oehme –Yang (LOY) approximation1:

⇓

i
∂|ψ; t〉

∂t
= H |ψ; t〉, |ψ; t = 0〉 = |ψ0〉, (1)

• H is the total selfadjoint Hamiltonian for the system

containing neutral kaons,

• units: ~ = c = 1,

• |ψ; t〉, |ψ0〉 ∈ H,

• H is the Hilbert space of states of the total system,

Within this problem:

H = H(0) + H(1), (2)

and |K0〉 ≡ |1〉 and |K0〉 ≡ |2〉 are discrete eigenstates

of H(0) for the 2–fold degenerate eigenvalue m0,

H(0)|j〉 = m0|j〉, (j = 1, 2);

H(0)|ε, J〉 = ε |ε, J〉.
1T. D. Lee, R. Oehme, C. N. Yang, Phys. Rev., 106 (1957) 340. T. D. Lee, C. S. Wu,

Ann. Rev. Nucl. Sci., 16 (1966) 471. J. W. Cronin, Acta Phys.Polon., B 15 (1984) 419.
V. V. Barmin et al, Nucl.Phys., B 247 (1984) 428. L. Lavoura, Ann.Phys. (N.Y.), 207
(1991) 428. M. K. Gaillard, M. Nicolic (Eds.), Weak Interaction, INPN et de Physique des
Particules, Paris, 1977, Ch. 5, Appendix A. T. D. Lee, Particle Physics and Introduction
to Field Theory, Harwood academic publishers, London 1990.
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We have:

〈j|k〉 = δjk, (j, k = 1, 2),

〈ε′, L|ε,N〉 = δLN δ(ε− ε′),
〈ε, J |k〉 = 0,

where J, L, N denotes such quantum numbers as charge,

spin, etc.

Here H(1) induces the transitions from |K0〉 ≡ |1〉 and

|K0〉 ≡ |2〉 to other (unbound) eigenstates |ε, J〉 of H(0),

and, consequently, also between |K0〉 and |K0〉.
The problem = the time evolution of an initial

state, which is a superposition of |1〉 and |2〉 states.

Solutions |ψ; t〉 of the the Schrödinger equation (1) for

this problem (for t ≥ t0 ≡ 0)2:

|ψ; t〉 = a1(t)|1〉 + a2(t)|2〉 +
∑

J, ε

FJ(ε; t)|ε, J〉, (3)

|a1(t)|2 + |a2(t)|2 +
∑

J, ε

|FJ(ε, t)|2 = 1,

FJ(ε; t = 0) = 0.

Here |FJ ; t〉 ≡ ∑
ε FJ(ε; t)|ε, J〉 represents the decay

products in the channel J .
2T. D. Lee, R. Oehme, C. N. Yang, Phys. Rev., 106 (1957) 340. M. K. Gaillard, M.

Nicolic (Eds.), Weak Interaction, INPN et de Physique des Particules, Paris, 1977, Ch.
5, Appendix A. T. D. Lee, Particle Physics and Introduction to Field Theory, Harwood
academic publishers, London 1990.
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Inserting |ψ; t〉, (3), into the Schrödinger equation (1)

⇓
System of coupled equations for amplitudes a1(t), a2(t)

and FJ(ε; t).

⇓
An adaptation of Weisskopf–Wigner approximation to

this system of coupled equations for a1(t), a2(t) and FJ(ε; t)

⇓
Lee–Oehme–Yang theory3

i
∂a1(t)

∂t
= hLOY

11 a1(t) + hLOY
12 a2(t),

etc., where t À t0 = 0, and

hLOY
jk = m0δjk − Σjk(m0), (j, k = 1, 2).

We have H
(1)
jJ (ε) = 〈j|H(1)|ε, J〉, and

Σjk(x) =
∑

J, ε

H
(1)
jJ (ε)

1

ε− x− i0
H

(1)
Jk (ε).

3T. D. Lee, R. Oehme, C. N. Yang, Phys. Rev., 106 (1957) 340. M. K. Gaillard, M.
Nicolic (Eds.), Weak Interaction, INPN et de Physique des Particules, Paris, 1977, Ch. 5,
Appendix A.
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A compact form of the evolution equations for a1(t), a2(t):

i
∂

∂t
|ψ; t〉‖ = HLOY |ψ; t〉‖, (t ≥ t0),

where

|ψ; t〉‖ = a1(t)|1〉 + a2(t)|2〉 ∈ H‖ ⊂ H,

and H|| is spanned by vectors |1〉, |2〉.

HLOY ≡ MLOY − i

2
ΓLOY ,

where MLOY = M+
LOY , ΓLOY = Γ+

LOY are (2× 2) matri-

ces acting in two–dimensional subspace H|| , and

hLOY
jk = 〈j|HLOY |k〉.

Solutions of the eigenvalue problem for HLOY

— eigenvectors:

|KS〉 =
1

(|pS|2 + |qS|2)1
2

(pS |K0〉 − qS |K0〉),

|KL〉 =
1

(|pL|2 + |qL|2)1
2

(pL |K0〉 + qL |K0〉).

— eigenvalues:

µS = mS − i

2
γS, µL = mL − i

2
γL.
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Assumption

The total system under considerations is CPT–invariant,

[Θ, H ] = 0. (4)

Here

Θ
def
= CPT ,

is an antiunitary operator and C is the charge conjuga-

tion operator, P — space inversion, and the antiunitary

operator T represents the time reversal operation.

Consequences of (4).

hLOY
11 = hLOY

22 , (5)

pS = pL ≡ p, qS = qL ≡ q, (6)

(
q

p
)2 =

hLOY
21

hLOY
12

= const. (7)

|KS〉 ≡ 1

(|p|2 + |q|2)1
2

(p |K0〉 − q |K0〉), (8)

|KL〉 ≡ 1

(|p|2 + |q|2)1
2

(p |K0〉 + q |K0〉), (9)

〈KS|KL〉 ≡ [〈KS|KL〉]∗ =
|p|2 − |q|2
|p|2 + |q|2 . (10)
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The standard results of the LOY approach:

Properties (5) – (10) and the property that | q
p | 6= 1

in CPT invariant system when CP is violated4

Remark

If one describes the properties of neutral mesons and

the time evolution of their state vectors using the LOY

method then, in fact, one assumes that Hamiltonians

H,H(0) and H(1) acting inH exist and that the solutions

of Schrödinger equation (1) describe the time evolution

of states in H.

The aims of the talk

• to confront the main predictions of the LOY theory

with predictions following from the rigorous treat-

ment of two state quantum mechanical subsystems

and from the properties of the exact effective Hamil-

tonian for such subsystems.

• to show graphically how the Khalfin’s Theorem

”works” in a model of neutral kaon complex.
4S. Eidelman et al, Review of Particle Physics, Phys. Lett. B 592, No 1–4, (2004).
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2 Khalfin’s Theorem

Principles of quantum mechanics:

t = 0 t > 0

|ψ1〉 ∈ H t−→ |ψ2〉 = U(t)|ψ1〉 ∈ H
where U(t) acts in H and

U(t) U+(t) = U+(t) U(t) = I, (11)

U(t1) U(t2) = U(t1 + t2) = U(t2) U(t1). (12)

⇓
U(0) = I and [U(t)]−1 ≡ [U(t)]+ = U(−t). (13)

The transition amplitude

Ajk(t) = 〈ψj|U(t)|ψk〉, (14)

where (j, k = 1, 2), determines the probability to find the

system in the state |ψj〉 at time t > 0 if it was earlier at

instant t = 0 in the initial state |ψk〉.
Relation (13)

⇓
[A12(−t)]∗ = A21(t). (15)
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P. K. Kabir and A. Pilaftsis5

⇓

f21(t)
def
=

A21(t)

A12(t)
. (16)

Relation (15)

[A12(−t)]∗ = A21(t)

⇓

[f21(−t)]∗ f21(t) = 1. (17)

Remark

The relation (17) as well as the property (15) are valid

for any two states |ψ1〉, |ψ2〉 ∈ H.

5P. K. Kabir and A. Pilaftsis, Phys. Rev., A53, (1996), 66.
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Khalfin’s Theorem6

If

f21(t) ≡ A21(t)

A12(t)
= ρ = const.

then there must be

R = |ρ| = 1.

Proof (Kabir and Pilaftsis)

From the property (17), i. e. that, [f21(−t)]∗ f21(t) = 1,

it follows that if f21(t) = ρ = const for every t ≥ 0

then [f21(t
′)]∗ = ζ = const for all t′ ≤ 0. Now, if the

functions f21(t) and [f21(t
′)]∗ are continuous at t = t′ = 0

then there must be

R = |ρ| = |ζ| = 1,

which is the proof of the Khalfin’s Theorem.

As it was pointed out by Kabir and Pilaftsis, the only

problem in the above proof is to find conditions guaran-

teing the continuity of f21(t) at t = 0.
6L. A. Khalfin, Preprints of the CPT, The University of Texas at Austin: DOE-ER-

40200-211, February 1990 and DOE-ER-40200-247, February 1991; (unpublished). L. A.
Khalfin, Foundations of Physics, 27 (1997), 1549. C. B. Chiu and E. C. G. Sudarshan,
Phys. Rev. D42 (1990), 3712 P. K. Kabir and A. Pilaftsis, Phys. Rev., A53, (1996), 66.
P. K. Kabir, A. N. Mitra, Phys. Rev. D52 (1995), 526. M. Nowakowski, Int. J. Mod.
Phys. A14, (1999), 589. G. V. Dass and W. Grimus, Phys. Rev. D67 (2003), 037901. G.
V. Dass, Phys. Rev. D60 (1999), 017501.
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There are two possibilities:

1) Vectors |ψ1〉, |ψ2〉 are not orthogonal,

〈ψ1|ψ2〉 6= 0.

2) Vectors |ψ1〉, |ψ2〉 are orthogonal,

〈ψj|ψk〉 = δjk, (j, k = 1, 2).

The case 1): Functions f21(t) t≥0 as well as [f21(t
′)]∗ t′≤0

are continuous at t = t′ = 0.

The case 2): Here

A21(0) = 0 and A12(0) = 0,

so

f21(t) ≡ A21(t)

A12(t)

need not be continuous at t = 0.

Quantum theory ⇒
U(t) = e−itH,

or,

UI(t) = T e−i
∫ t

0 HI(τ ) dτ ,

where T denotes the usual time ordering operator and

HI(τ ) is the operator H in the interaction picture.
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Remark

To assure the continuity of f21(t) at t = 0 it suffices that

there exist such n ≥ 1 that

〈ψ2|Hk|ψ1〉 = 0, (0 ≤ k < n), (18)

〈ψ2|Hn|ψ1〉 6= 0 and |〈ψ2|Hn|ψ1〉| < ∞. (19)

Proof

Assuming that (18), (19) hold and using the d’Hospital

rule one finds that simply

lim
t→0+

f21(t) =
〈ψ2|Hn|ψ1〉
〈ψ1|Hn|ψ2〉,

which means that f21(t) t≥0 is continuous at t = 0. Simi-

larly, the continuity of [f21(t
′)]∗ t′≤0 at t′ = 0 is assured.

Remark

In the case of neutral mesons ψ1 = K0, B0, D0 . . .

and ψ2 = K0, B0, D0 . . . . For neutral meson com-

plexes according to the experimental results the particle–

antiparticle transitions |ψ1〉 ­ |ψ2〉 exist, which means

that there must exist n < ∞ such that the relation (19)

occurs. So, for the neutral meson complexes only the

assumption of unitarity of the exact transition operator

U(t) assures the validity of the Khalfin’s Theorem.

12



3 Properties of time evolution governed by

a time–independent Hamiltonian acting in

two state subspace

Assumption

The two–dimensional subspace H‖ of H is spanned by

orthogonal vectors |ψ1〉, |ψ2〉.

Assumption

The evolution operator U‖(t) acting in this H‖ has the

following form

U‖(t) = e−itH‖,

and that the operator H‖ is a non–hermitian time–indep-

endent (2× 2) matrix acting in H‖,

∂hjk

∂t
= 0,

where hjk = 〈ψj|H‖|ψk〉, (j, k = 1, 2).

⇓
The operator U‖(t) is the (2× 2) matrix and

U‖(t1) U‖(t2) = U‖(t2) U‖(t1) = U‖(t1 + t2),

U‖(0) = I‖,
where I‖ is the unit matrix in H‖.
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Remark

The operator U‖(t) is the solution of the Schrödinger–like

evolution equation for the subspace H‖,

i
∂

∂t
U‖(t) |ψ〉‖ = H‖U‖(t)|ψ〉‖, U‖(0) = I‖,

where |ψ〉‖ ∈ H‖.
This equation is the equation of the same type as

the evolution equation used within the Lee–Oehme–Yang

theory to describe the time evolution in neutral mesons

subspace of states.

Remark

There is

H‖ = h0 I‖ + ~h · ~σ,

where σx, σy, σz are Pauli matrices,

~h · ~σ = hx σx + hy σy + hz σz,

and h0 = 1
2(h11 + h22), hz = 1

2(h11 − h22), ect.

⇓

U‖(t) = e−itH‖

≡ e−ith0 [I‖ cos (th) − i
~h · ~σ

h
sin (th)].
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There is

h2 = ~h · ~h = h2
x + h2

y + h2
z.

Matrix elements of U||(t),

u12(t) = −i e−ith0
h12

h
sin (th), (20)

u21(t) = −i e−ith0
h21

h
sin (th), (21)

u11(t) = e−ith0 [cos (th) − i
hz

h
sin (th)], (22)

u22(t) = e−ith0 [cos (th) + i
hz

h
sin (th)]. (23)

Remark

From (20) and (21) it follows that

u21(t)

u12(t)
≡ h21

h12

def
= r = const. (24)

Remark

From (22) and (23) it follows that

u11(t) − u22(t) = − 2i e−ith0
hz

h
sin (th), (25)

so

u11(t) = u22(t) ⇔ h11 = h22. (26)
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Remark

The above properties (24), (26), are true for every time–

independent effective Hamiltonian H|| acting in two–di-

mensional subspace H||.
In other words, they hold for the LOY effective Hamil-

tonian, HLOY , as well as for every H|| 6= HLOY .

Conclusion 1

If |r| 6= 1 and the time–independent effective Hamilto-

nian H|| is the exact effective Hamiltonian for the sub-

space H|| of states of neutral mesons, that is if

ujk(t) ≡ Ajk(t), (27)

where j 6= k, (j, k = 1, 2), r = u21(t)
u12(t)

≡ h21
h12

(see

(24)), ujk(t)
def
= 〈ψj|U‖(t)|ψk〉 = 〈ψj|e−itH‖ |ψk〉, and

Ajk(t) = 〈ψj|U(t)|ψk〉, (see (14)), then the evolution

operator U(t) for the total state space H can not be a

unitary one.
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Proof

Experimental results indicate that for the neutral kaon

complex |r| 6= 1 So, this conclusion holds because from

the Khalfin’s Theorem it follows that if |r| 6= 1 and ma-

trix elements Ajk(t), (j, k = 1, 2) are the matrix ele-

ments of the exact evolution operator U(t) then there

must be |r| 6= const. Thus if the relation, ujk(t) ≡
Ajk(t), is the true relation then there is only one pos-

sibility: The Khalfin’s Theorem is not valid in this case.

From the proof of this Theorem given in the previous

Section and analysis of the case of neutral mesons per-

formed there it follows that this Theorem holds if the

evolution operator U(t) for the total state space H of

the system containing two state subsystem under consid-

erations is a unitary operator. For the neutral mesons

subsystem Khalfin’s Theorem need not hold only if the

total evolution operator U(t) is not a unitary operator.

Remark

The description on neutral meson subsystem within

the use of any time–independent effective Hamiltonian

H|| is not the exact description. It is only an approxima-

tion.
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4 Symmetries CP, CPT and the exact evolu-

tion operator and effective Hamiltonian for

neutral mesons subsystem

Properties of the exact effective Hamiltonian for the sub-

space H‖ result from the properties of the exact (transi-

tion) evolution operator, U||(t) = PU(t)P , for H‖:

U||(t) ≡ PU(t)P =

(
A(t) 0

0 0

)
,

where

P = |ψ1〉〈ψ1| + |ψ2〉〈ψ2|,
U(t) — the exact evolution operator for the total state

space H,

H‖ = PH,

|ψ1〉, |ψ2〉 are orthonormal vectors,

0 — zero–submatrices,

A(t) =

(
A11(t) A12(t)

A21(t) A22(t)

)
,

Ajk(t) = 〈ψj|U(t)|ψk〉, (j, k = 1, 2),

A(0) = I‖ is the unit operator for H||.

18



The exact effective Hamiltonian H‖ governing the time

evolution in H‖7:

H‖ = H||(t) ≡ i
∂A(t)

∂t
[A(t)]−1. (28)

The exact Schrödinger–like evolution equation for the

subspace H‖:

i
∂

∂t
|ψ, t〉‖ = H‖(t) |ψ, t〉‖.

Here:

|ψ, t〉‖ = a1(t) |ψ1〉 + a2(t) |ψ2〉 = A(t) |ψ〉‖ ∈ H‖,
|ψ〉‖ = a1|ψ1 + a2|ψ2〉 ∈ H‖ is the initial state of the

system,

‖ |ψ〉|| ‖ = 1.

From (28):

h11(t) =
i

detA(t)
(
∂A11(t)

∂t
A22(t)− ∂A12(t)

∂t
A21(t)),

h22(t) =
i

detA(t)
(− ∂A21(t)

∂t
A12(t) +

∂A22(t)

∂t
A11(t)).

7K. Urbanowski, Bull. de L’Acad. Polon. Sci.: Ser. sci. phys. astron., 27, (1979),
155. L. P. Horwitz, J. P. Marchand, Helv. Phys. Acta, 42, (1969), 801. K. Urbanowski,
Acta Phys. Polon. B 14 (1983) 485. K. Urbanowski, Phys. Rev. A 50, (1994) 2847. K.
Urbanowski, Phys. Lett., B 540, (2002), 89; hep-ph/0201272. K. Urbanowski, Acta Phys.
Polon. B 37 (2006) 1727.
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So,

h11(t)− h22(t) =
i

detA(t)
{A11(t) A22(t)

∂

∂t
ln (

A11(t)

A22(t)
)

+ A12(t) A21(t)
∂

∂t
ln (

A21(t)

A12(t)
)}.

(29)

Assumptions

[Θ, H ] = 0,

|ψ1〉 ≡ |1〉, |ψ2〉 ≡ |2〉.
⇓

A11(t) = A22(t). (30)

Assumptions

[CP , H ] = 0,

CP|1〉 = e−iα|2〉, CP|2〉 = e+iα|1〉.

⇓
A12(t) = e2iαA21(t), and A11(t) = A22(t). (31)

⇓
| A21(t)

A12(t)
| = 1 ≡ const.
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Assumption

[CP , H ] 6= 0.

⇓
A21(t)

A12(t)
| 6= 1, (∀t > 0).

Conclusion 2

If (h11(t)− h22(t)) = 0 for t > 0 then there must be

a)

A11(t)

A22(t)
= const., and

A21(t)

A12(t)
= const., (for t > 0),

or,

b)

A11(t)

A22(t)
6= const., and

A21(t)

A12(t)
6= const., (for t > 0).

Remark

Case a) means that CP–symmetry is conserved and there

is no information about CPT invariance.

Case b) denotes that the system under considerations is

neither CP–invariant nor CPT–invariant.
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Assumption

[Θ, H ] = 0 ⇒ A11(t) = A22(t).

The above property and relation (29):

⇓

h11(t)−h22(t) =
i

detA(t)
{A12(t) A21(t)

∂

∂t
ln (

A21(t)

A12(t)
)}

⇓
h11(t)− h22(t) = 0 ⇔ A21(t)

A12(t)
= const., (t > 0).

Consequences of the Khalfin’s Theorem:

⇓
Conclusion 3

If [Θ, H ] = 0 and [CP , H ] 6= 0, that is if for t > 0

A11(t) = A22(t) and A21(t)
A12(t)

6= 1 , then there must be

(h11(t)− h22(t)) 6= 0 for t > 0.

Remark

Within the exact theory (i.e. for real systems), the

property

h11 = h22

can not occur if CPT symmetry holds and CP is violated.

In this case such a relation is only an approximation.
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5 Model calculations

The model considered by Khalfin8 and then by

Nowakowski9:

Hamiltonian, H , for the system containing neutral kaon

complex is a hermitian operator with a continuous spec-

trum of decay products labeled by α, β, etc.,

H|φα(m)〉 = m |φα(m)〉,
〈φβ(m′)|φα(m)〉 = δαβδ(m′ −m).

⇓

|KS〉 =

∫

Spec (H)

dm
∑

α

cS,α(m)|φα(m)〉,

|KL〉 =

∫

Spec (H)

dm
∑

β

cS,α(m)|φβ(m)〉,

|j〉 =

∫

Spec (H)

dm
∑

α

cj,α(m)|φα(m)〉,

where j = 1, 2.

8L. A. Khalfin, Preprints of the CPT, The University of Texas at Austin: DOE-ER-
40200-211, February 1990 and DOE-ER-40200-247, February 1991; L. A. Khalfin, Foun-
dations of Physics, 27 (1997), 1549.

9M. Nowakowski, Int. J. Mod. Phys. A14, (1999), 589.
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The exact Ajk(t) is the Fourier transform of the density

ωjk(m), (j, k = 1, 2):

Ajk(t) =

∫ +∞

−∞
dm e−imtωjk(m),

where

ωjk(m) =
∑

α

c∗j,α(m) ck,α(m).

Requirements for ωjk(m):

∫ +∞

−∞
dm |ωjk(m)| < ∞,

ωjk(m) = 0 if m < mg, (mg > −∞).

Spec(H) = [mg, ∞).

Physical states:

|KS〉 ≡ 1

(|p|2 + |q|2)1
2

(p |K0〉 − q |K0〉),

|KL〉 ≡ 1

(|p|2 + |q|2)1
2

(p |K0〉 + q |K0〉).

⇓
ωjk(m) = f (cS,α(m), cS,α(m)) ⇒ Ajk(t), (j, k = 1, 2).
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Nowakowski:

cS,β(m) = Θ(m−mg)

√
γS

2π

aS,β(KS → β)

m−mS + iγS
2

,

cL,β(m) = Θ(m−mg)

√
γL

2π

aL,β(KL → β)

m−mL + iγL
2

,

where:

aS,β and aL,β are the decay (transition) amplitudes,

Θ(m−mg)
def
=

{
1 if m ≥ mg,

0 if m < mg,
.

⇓
ASS(t)

def
= 〈KS|e−itH |KS〉 =

∫ +∞

−∞
dm ωSS(m) e−itm,

and so on.

ωSS(m) = Θ(m−mg)
γS

(m−mS)2 +
γ2
S
4

S

2π
,

S =
∑

α

|aS,α(KS → α)|2.

Assumptions

mg = 0,

A11(t) = A22(t),

i.e., CPT symmetry holds.
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Assumptions10

mS ' mL ' maverage = 497.648MeV,

∆m = 3.489× 10−12MeV,

τS = 0.8935× 10−10s, (γS = 7.4× 10−12MeV ),

τL = 5.17× 10−8s, (γL = 1.3× 10−14MeV ).

⇓
Mathematica

⇓

Figure 1: Numerical examination of the Khalfin’s Theorem.

Here y(x) = |r(t)| ≡ | A21(t)
A12(t)

|, x = γL

~ · t, and x ∈ (0.01, 10).

10S. Eidelman et al, Review of Particle Physics, Phys. Lett. B 592, No 1–4, (2004).
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Remark

ymax(x)− ymin(x) ' 3.3× 10−16,

where

ymax(x) = |r(t)|max,

ymin(x) = |r(t)|min.

Remark

For times t considered

A21(t)

A12(t)
= R + ∆r(t),

where, R = const and |∆r(t)| ≤ 10−16.

Remark

If one is able to measure the modulus of the ratio A12(t)
A21(t)

only up to the accuracy 10−15 then one sees this quantity

as a constant function of time.

The variations in time of | A12(t)
A21(t)

| become detectable

for the experimenter only if the accuracy of his measure-

ments is of order 10−16 or better.
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x

-1.5·10-16

-1·10-16

-5·10-17

y

Figure 2: Real part of (h11(t)− h22(t))

There is y(x) = < (h11(t)− h22(t) in Fig 2.
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1 2 3 4 5
x

1.95·10-13
1.96·10-13
1.97·10-13
1.98·10-13
1.99·10-13

2.01·10-13

y

Figure 3: Imaginary part of (h11(t)− h22(t))

There is y(x) = = (h11(t)− h22(t) in Fig 3.

In the above Figures x = γL
~ · t, x ∈ (0.01, 5.0).

Units on the y–axis are in [MeV].

Remark

An expansion of scale in Fig. 2 shows that continuous

fluctuations, similar to those in Fig. 3, appear.

For more graphics and results see:

J. Jankiewicz, Acta. Phys. Polon. B 36, (2005), 1901.

J. Jankiewicz, hep-ph/0612178.
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6 Final remarks

From Conclusion 3,

”If [Θ, H ] = 0 and [CP , H ] 6= 0, that is if A11(t) =

A22(t) and A21(t)
A12(t)

6= 1 for t > 0, then there must be

(h11(t)− h22(t)) 6= 0 for t > 0.”

drawn up earlier, it follows that, contrary to the stan-

dard interpretation following from the LOY theory,

δ 6= 0, or, εs 6= εl,

when CPT symmetry holds and CP symmetry is violated.

Here

δ
def
=

1

2
(εs − εl) ≡ h11 − h22

D
≡ 2hz

D
,

D
def
= h12 + h21 + ∆µ,

and ∆µ = µS − µL.

|KL(S)〉 ≡
1√

1 + |εl(s)|2
( |K2(1)〉 + εl(s)|K1(2)〉),

|K1(2)〉 def
=

1√
2
( |1〉 − (+)|2〉),

CP|K1(2)〉 = +(−1)|K1(2)〉,
Here,

CP|1〉 = (−1)|2〉, CP|2〉 = (−1)|1〉.
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Remark

The result that there must be

εs 6= εl,

if CPT symmetry holds CP is violated was also obtained

by B. Machet, V. A. Novikov and M. I. Vysotsky, (see:

Int. J. Mod. Phys. A 20, (2005), 5399, and, hep–

ph/0407268 by V. A. Novikov, where within the quan-

tum field theory binary systems such as the neutral me-

son complexes were analyzed).

For more details see:

K. Urbanowski, Phys. Lett., B 540, (2002), 89; hep-

ph/0201272,

K. Urbanowski, Acta Phys. Polon. B 37 (2006) 1727.

K. Urbanowski, J. Jankiewicz, hep–ph/0707.3219.

Remark

All conclusions and results presented in this talk fol-

low from mathematically rigorous treatment of the basic

assumptions of the quantum theory.

Thank you
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