Search for New Physics in rare decays at LHCb

Victor Egorychev

Institute for Theoretical and Experimental Physics

Rare decays and New Physics

- CKM model gives a remarkably consistent description of experimental results
- The most precise tests come from either tree-level B decays or from B mixing
- Where is the New Physics
 - CP violation (any inconsistencies in the UT construction will indicate the present of NP) _1 (for LHCb perspectives see the talk by **S.Barsuk**)
 - Rare decays
 - penguin and box decays are particularly attractive
 - virtual new particles may alter the decay rate, CP asymmetry and other observable quantities
 - rare B decays, where penguin amplitudes play a dominate role, are excellent places to look for NP
 - the study of B-meson decays at LHCb is characterized through a high statistics and the access the B_s system

Rare decays

- Radiative penguins
- Electroweak penguins B→K*II
- Very rare decays $B_{s,d} \rightarrow \mu\mu$
- Lepton flavor violation decays $\rm B \rightarrow e \mu$

We are just approaching sensitivity promising for discovery

Thanks to the large statistics that can be collected by LHCb experiment, we will be able to enter a new territory in the exploration of rare B decays

Common features for LHCb analysis

- analysis based on full detailed simulation with the realistic reconstruction chain
- Beauty particles:
 - m_b \sim 5 GeV/c² - βγcτ \sim O (1 cm)
- particles from B decays
 - large p_T
 - large impact parameters

- B-decay products do not point to reconstructed primary vertex
- exclusively reconstructed B-candidate does point to primary vertex
- B candidate is associated with primary vertex with minimal impact parameter (significance)
- Background bb production with at least one B within LHCb acceptance

Search for $B_{\varsigma} \rightarrow \mu^+ \mu^-$

$$\mathcal{B}(B_s \to \mu^+ \mu^-) = (3.4 \pm 0.5) \times 10^{-9}$$

BR is highly suppressed in the SM

A.J. Buras et al., Phys.Lett.B566 (2003) 115

SUSY: $\mathcal{B}(B_s \rightarrow \mu^+ \mu^-) \propto \tan^6 \beta$

 $\tan\beta$ – the ratio of the Higgs vacuum expectation values

BR can be *greatly enhanced* (100 x SM) for large tan β !

Example: Constrained MSSM

Experimental status and LHCb

LP2007 conference

• CDF with 2 fb⁻¹

BR(B_s $\rightarrow \mu^+\mu^-) < 5.8 \times 10^{-8}$ @ 95 % C.L.

• D0 with 2 fb⁻¹

BR($B_s \rightarrow \mu^+ \mu^-$) < 9.3x10⁻⁸ @ 95 % C.L.

• Present limit is a factor 20 higher than SM predictions

LHCb features

•Very efficient trigger for the signal
•Good mass resolution for
background rejection (18 MeV/ c²)
•High μ-π and μ-K separation to
minimize hadron misID

$B_s \rightarrow \mu^+ \mu^-$ (soft selection)

ΡV

removes the biggest amount of background with signal efficiency > 90%

CERN-LHCb-2007-033 D.Martinez, J.A.Hernando, F.Teubert

10

10²

10

, θ

 μ^{-}

$B_s \rightarrow \mu^+ \mu^-$ (N-counting method)

<u>Geometry Likelihood</u>

- lifetime
- muon IPS
- \bullet distance of closest approach between two $\mu\text{-}$ candidates.
- Bs Impact Parameter
- vertex Isolation

<u>PID Likelihood</u>

Difference in likelihood between μ and π hypotheses (RICH + MUON info)
Difference in likelihood between μ and K hypotheses (RICH +\MUON info)

<u>Invariant Mass Likelihood</u>

Invariant Mass

- identify some
 discriminant variables
- divide the variables in N bins
- evaluate the "expected" number of events for signal/background in each bin
- compute confidence
 levels for observation and
 exclusion

Background is assumed to be dominated by combinations of $b \rightarrow \mu^{-} X b \rightarrow \mu^{+} X$ events.

$b \rightarrow s \gamma$ and $b \rightarrow s I^+I^-$

SM calculations for these rare decays are performed using an effective Hamiltonian that is written in terms of several shortdistance operators

 V_{ts}

 V_{tb}

W

γ penguin Semileptonic vector Semileptonic avial y

Semileptonic axial-vector

NP may alter the magnitude and/or sign of the effective Wilson coefficients

$b \rightarrow s \gamma$ and $b \rightarrow s I^+I^-$

Experimental knowledge on the Wilson coefficients comes from

• inclusive b \rightarrow s γ branching fraction

-determines the absolute value of C_7 to about 20% accuracy - not its sign

• inclusive b \rightarrow s l⁺l⁻ branching fraction

-constrains C_{g} and C_{10} to annular region in the C_{g} - C_{10} plane - no information on the individual signs and magnitudes of these coefficients

To further pin down the values, it is necessary to exploit interference effects between the contributions from different operators

$B \rightarrow K^* I^+I^-$ forward-backward asymmetry (A_{FB})

- Exclusive decays affected by hadronic uncertainties
- Vector (C₇,C₉) and axialvector (C₁₀) contributions interfere
- Relative strength of V and A couplings varies with square of di-lepton invariant mass (q²)

A.Ali, E.Lunghi, C.Greub, and G.Hiller PRD 66, 034002 (2002).

$B \rightarrow K^* I^+I^-$ (selection)

to avoid cuts that bias the μμ massspectrum

 J/ψ and $\Psi(2S)$ mass regions excluded

The $\mu\mu$ invariant mass distribution for reconstructed signal events before (solid) and after (crosses) selection cuts shown that the efficiency of the cuts does not depend on $m_{\mu\mu}$ up to ~3.5 GeV/c²

CERN-LHCb-2007-038 J.Dickens, V.Gibson, C.Lazzeroni, M.Patel

$B \rightarrow K^* I^+I^-$ at LHCb

$B \rightarrow K^* I^+I^-$ at LHCb

Look at decay in terms of transversity amplitudes $A_{\perp}, A_{\parallel}, A_0$ for left and right handed currents

$$A_T^{(1)}(s) = \frac{-2\text{Re}(A_{\parallel}A_{\perp}^*)}{|A_{\perp}|^2 + |A_{\parallel}|^2}, \quad A_T^{(2)}(s) = \frac{|A_{\perp}|^2 - |A_{\parallel}|^2}{|A_{\perp}|^2 + |A_{\parallel}|^2}.$$

$$F_L(s) = \frac{|A_0|^2}{|A_0|^2 + |A_{\perp}|^2 + |A_{\perp}|^2}$$

F_L measurement looks plausible with 2fb⁻¹

(Matias, hep-ph/0612166)

A_T² looks more difficult – proof of principle with 2fb⁻¹

 A_T¹ requires measurement of individual helicity amplitudes → full fit to Γ(θ_I,θ_{K*},φ, s) – experimentally difficult

$b \rightarrow s\gamma$: direct CP asymmetry

The most effective "NP killer" – Gino Isidori, hep-ph/0401079

• One way of searching of NP is study of CP violation

$$A_{CP} = \frac{\Gamma(b \to s\gamma) - \Gamma(\overline{b} \to \overline{s}\gamma)}{\Gamma(b \to s\gamma) + \Gamma(\overline{b} \to \overline{s}\gamma)}$$

• Standard Model A_{CP} prediction is *theoretically clean*

$$A_{CP} = (0.42 \ {}^{+0.17}_{-0.12})\%$$
 T.Hurth, E.Lungh, W.Porod
Nucl Phys B704, 56 (2005)

• Large A_{CP} is smoking gun for New Physics

MFV
$$A_{CP}$$
< 2%G. D'Ambrosio et al.,
Nucl Phys B645, 155 (2002)SUSY with R-parity
violation A_{CP} ~ 17%E.J.Chun, K.Hwang, J.C.Lee
Hep-ph/0005013

$b \rightarrow s\gamma$: photon polarization

the polarization of the photon provides an important test of the SM

 $b \rightarrow \gamma (L) + (m_s/m_b) \times \gamma(R)$ (mostly left-handed)

Methods:

- mixing induced CP asymmetries in $B_s \rightarrow \phi \gamma$, $B \rightarrow K_s \pi^0 \gamma$ (B-factories) SM extensions: amplitude of the right-handed photons grows proportional to the virtual heavy fermion mass, which can lead to the large asymmetries

- $\Lambda_b \rightarrow \Lambda\gamma$: the angular asymmetry between the Λ_b spin and the photon momentum combined with the secondary $\Lambda \rightarrow \pi p$ decay polarization probes the predicted V-A structure of this decay

- Photon helicity can be measured directly using converted photons in $B \rightarrow K^* \gamma$ decay or parity-odd triple correlation (P(γ),[P(h_1) × P(h_2)]) between photon and 2 out of 3 final state hadrons. Good examples are $B \rightarrow \phi K \gamma$ and $B \rightarrow K \pi \pi \gamma$ decays

 $B_d \rightarrow K^* \gamma, B_s \rightarrow \phi \gamma$ (selection)

Special cut

(to reject background from $B_d \rightarrow K^* \pi^0$, $B_s \rightarrow \varphi \pi^0$)

LHCb control channel: $B_d \rightarrow K^* \gamma$ ~75k signal events per 2fb⁻¹

angle between one daughter of the vector meson and the reconstructed B meson in the rest frame of the vector meson

CERN-LHCb-2007-030 19 L.Shchutska, A.Golutvin, I.Belyaev

Radiative decay at LHCb

Good physics potential to study of radiative decays

decay	N/ 2 fb ⁻¹	B/S
B _d →K*γ	75 k	0.71 ± 0.11
$B_s \rightarrow \phi \gamma$	11.5 k	< 0.95 @ 90% CL
$B_d \rightarrow \omega \gamma$	40	< 3.5 @ 90% CL
$\Lambda_b \rightarrow \Lambda^0 \gamma$	750	< 42 @ 90% CL
$\Lambda_b \rightarrow \Lambda$ (1520) γ	4.2 k	< 10 @ 90% CL
$\Lambda_b \rightarrow \Lambda$ (1670) γ	2.2 k	< 18 @ 90% CL
$\Lambda_b \rightarrow \Lambda$ (1690) γ	2.2 k	< 18 @ 90% CL

The statistical error on A_{CP} ($B_d \rightarrow K^* \gamma$) is well below 1% The statistical error on V_{td}/V_{ts} from $B_d \rightarrow K^* \gamma$, $B_d \rightarrow \omega \gamma$ of about $O(0.1 \vee (1 + B/S) / N))$ 15% sensitivity to $\gamma(R)$ after 5 years 20

Summary

LHCb has a good potential to studies of rare B decays in a way to search for New Physics and to constrain New Physics model parameters via:

-Photon helicity in exclusive radiative penguins

- Measurement of FBA, zero point, transversity amplitudes in b \rightarrow sll exclusive decays (K*µµ, ϕ µµ, ...)

- Measurement of BR(B $_{\rm s,d}$ \rightarrow $\mu\mu$) down to SM predictions

- Search for lepton flavor violation

decay	N/ 2 fb ⁻¹	B/S
В _d →К*γ	75 k	0.71 ± 0.11
$B_s \rightarrow \phi \gamma$	11.5 k	< 0.95 @ 90% CL
$B_d \rightarrow \omega \gamma$	40	< 3.5 @ 90% CL
$\Lambda_{\rm b} \not \rightarrow \Lambda^0 \gamma$	750	< 42 @ 90% CL
$Λ_b$ → Λ(1520) γ	4.2 k	< 10 @ 90% CL
$Λ_b$ → Λ(1670) γ	2.2 k	< 18 @ 90% CL
$Λ_b$ → Λ(1690) γ	2.2 k	< 18 @ 90% CL
$B_d \rightarrow K^* \mu^+ \mu^-$	7.7 k	0.5 ± 0.2
$B_u \rightarrow K e^+ e^-$	360	~ 5
$B_u \rightarrow K \mu^+ \mu^-$	4.4 k	~ 3

21

The challenge is to achieve that performance with real data

Back up

Search for LFV decays $B_{s,d} \rightarrow e^+ \mu^-$

BR(B_d \rightarrow e⁺ μ ⁻) < 1.7 x10⁻⁷ @ 90 % C.L.

Belle collaboration, Phys. Rev. D68 (2003) 111101 BR(B_s $\rightarrow e^+\mu^-) < 6.1 \times 10^{-6}$ @ 90 % C.L.

CDF collaboration, Phys. Rev. Lett. 81 (1998) 5742

In the framework of Pati-Salam model, the limits on branching fractions can be interpreted as lower limits on the Pati-Salam Leptoquark mass, which are 90·F d mix TeV and 65·F s mix TeV, at 90 % C.L., where the F d,s mix are factors taking into account generation mixing within the Pati-Salam Model. 23