XIII Lomonosov Conference on Elementary Particle Physics August 23 – 29, 2007

Search for New Phenomena and non-SM Higgs at the Tevatron

Richard Partridge Brown University

The Standard Model Remains Standing!

Preview of this talk's conclusions:

 Tevatron searches for New Phenomena show no significant deviations from Standard Model predictions

This is probably not a surprise

- It is a conclusion we have heard far too many times...
- The title of my talk starts with the word "Search"...
- Rumors and news travel faster than airplanes...

Will the SM Continue to Stand?

- While the edifice of the Standard Model remains intact, the foundation is weak
 - The familiar force of gravity is completely absent
 - The SM appears to describe only ~5% of the universe
 - Some divergent loops are not cancelled (hierarchy problem)
 - Large number of seemingly arbitrary parameters
 - Source of baryon asymmetry, integer ratio of quark/lepton charges, strong CP puzzle, etc. etc.

Likely the better question is:

"How Long Will the SM Continue to Stand"

Lessons from the Past

- Nearly all of the major particle physics discoveries in the past ~35 years were predicted by well motivated theoretical arguments now embodied in the SM
 - The converse is not true not all good theoretical ideas survive!
 - This did not occur in a vacuum the experimental clues were in place
 - Many successes from requiring calculations to yield sensible results ⇒ gauge theories, cancellation of divergent loops and anomolies, etc.
 - We should listen to our theoretical colleagues!
- The discovery of dark matter and dark energy are perhaps the most notable exceptions
 - Interestingly, these discoveries were made with telescopes rather than particle accelerators
 - New technology can play a significant role in breaking new ground
 - There are limits to theoretical prognostication!

Looking under the Lamp Post

- A successful accelerator search requires:
 - There is enough energy to produce the particle in question
 - There is enough luminosity to produce the particle in sufficient quantity
 - The new particle is distinguishable from backgrounds
 - Experimenters have to look in the right place
- In some sense, we are like the person who has lost their keys at night...our only hope is to look under the lamp posts where there is sufficient "illumination"
- This analogy is especially true for New Phenomena searches at the Tevatron
 - Well motivated theoretical arguments for new physics at the TeV scale
 - But the Tevatron energy / luminosity may not provide enough illumination
 - By contrast, LHC will have the energy / luminosity needed to thoroughly explore the TeV scale

Selected Tevatron Lamp Posts

This talk will focus on a subset of the Tevatron searches:

- Search for supersymmetric particles
 - Squark / gluino
 - Neutralino / chargino
 - Gauge Mediated SUSY
- Search for Non-SM Higgs
 - SM Higgs search covered in talk by Gaston Gutierrez
- Search for excited gauge bosons
- Search for leptoquarks
- Search for extra dimensions

Many details are omitted in this talk – please refer to CDF / DØ publications and web pages for more complete descriptions of these (and other) analyses

SUperSYmmetry

- Supersymmetry imposes a new symmetry between fermions and bosons
- Symmetry is clearly broken – SUSY particles must be heavy if they exist

SM Particles	SUSY P	articles
quarks: q	q	squarks: \tilde{q}
leptons: <i>l</i>	1	sleptons: Ĩ
gluons: g	g	gluino: \tilde{g}
charged weak boson: W^{\pm}	W^{\pm}	Wino: \widetilde{W}^{\pm} \sim^{\pm}
Higgs: H^0	H^{\pm}	charged higgsino: $\widetilde{H}^{\pm} \int \chi_{1,2}$ chargino
niggs. n	h^0, A^0, H^0	neutral higgsino: $\tilde{h}^0, \tilde{A}^{(n)} = \tilde{H}^0$ higgsino
neutral weak boson: Z^0	Z^0	Zino: $\widetilde{Z}^0 > \widetilde{\chi}^0_{1234}$ neutralino
photon: γ	γ	photino: $\tilde{\gamma}$

- SUSY potentially resolves a number of open issues in the SM
 - Loop diagrams cancel at all orders (solves the hierarchy problem)

- If R-Parity is conserved, then lightest SUSY particle is a dark matter candidate
- Potential to unify coupling constants at the GUT scale (assuming nothing goes wrong in the 13 orders of magnitude between the TeV and GUT scales)
- Supersymmetry required in some attempts to include gravity (e.g., string theory)

Richard Partridge

Squark / Gluino Search

Squarks and gluinos produced by strong interaction

 For stable neutralino LSP, decays yield final states of Missing E_T and jets

- Data contains events with missing
 E_T as high as 368 GeV
- H_T, the scaler sum of jet E_T, is 489
 GeV for this event

DØ Squark / Gluino Search

- Assume gravity mediated (mSuGRA) SUSY breaking
 - 5 parameters: m_0 , $m_{1/2}$, A, $tan\beta$, and $sign(\mu)$
- 3 Separate Analyses
 - low m_0 : squark pair production dominates $\Rightarrow \ge 2$ jets + Missing E_T
 - med m₀: squark-gluino production dominates $\Rightarrow \ge 3$ jets + Missing E_T
 - high m_0 : gluino-gluino production dominates $\Rightarrow \ge 4$ jets + Missing E_T

Final MET/HT cuts :

- " "dijet" : MET > 225 GeV, HT > 300 GeV
- "3-jets" : MET > 150 GeV, HT > 400 GeV
- "gluino" : MET > 100 GeV, HT > 300 GeV

	Data	Total background
"Dijet"	5	7.5 ±1.1 (stat) +1.3 -1.0 (syst)
"3 jets"	6	6.1 ±0.4 (stat) +1.3 -1.2 (syst)
"Gluino"	34	33.4 ±0.8 (stat) +5.6 -4.9 (syst)

Richard Partridge

Squark / Gluino Search Results

Yellow band: PDF and scale uncertainties Limits from lower edge of band

$$\begin{split} m_{\widetilde{q}} &> 375 \, \text{GeV} @.95\% \, \text{CL} \\ m_{\widetilde{g}} &> 383 \, \text{GeV} @.95\% \, \text{CL} \\ m_{\widetilde{q}} &= m_{\widetilde{g}} : m > 380 \, \text{GeV} @.95\% \, \text{CL} \\ & \text{Richard Partridge} & \text{XIII Lom} \end{split}$$

Similar analysis by CDF presented at the 2007 Lepton-Photon conference

PDF and scale uncertainties not shown Limits from nominal cross section

 $m_{\tilde{g}} > 290 \text{ GeV} @ 95\% \text{ CL}$ $m_{\tilde{g}} = m_{\tilde{g}}: m > 380 \text{ GeV} @ 95\% \text{ CL}$

Search for Stop Squarks

- Stop quark can be relatively light
 - Large Yukawa coupling of top quark generates a light stop mass in some models
 - If m(stop) < m(top), decays to top are forbidden</p>
 - Two light stop searches currently limit SUSY parameter space

CDF Search for Stable Stop Squarks

- If the Stop Squark is the lightest SUSY partner, then it will appear as a stable particle
 - Stop reconstructed as a muon
 - Calculate particle mass from TOF and momentum measurements

Chargino / Neutralino Search

- Triple gauge boson coupling leads to $\chi_2^0 \chi_1^+$ production
 - Small BR for 3 lepton final states
 - Clean signature with little background
 - "trilepton" and like-sign dilepton signatures

CDF Trileptons	Background	Data
$\mu\mu + \ell (\text{low } p_T)$	0.4 ± 0.1	1
ee + track	1.0 ± 0.3	3
$\mu + \ell \ell$	1.2 ± 0.2	1
e + l l	0.8 ± 0.4	0
$e^{\pm}e^{\pm}$	2.9 ± 0.5	4
$e^{\pm}\mu^{\pm}$	4.0 ± 0.6	8
$\mu^{\pm}\mu^{\pm}$	0.9 ± 0.1	1

DØ Trileptons	Background	Data
μμ + track	0.32 ± 1.34	2
ee + track	1.0 ± 0.3	0
eµ + track	0.9 ± 0.4	0
$\mu^{\pm}\mu^{\pm}$	1.1 ± 0.4	1

 No significant excess – combine channels to form cross section limits

Chargino / Neutralino Search

- CDF: $\tan \beta = 3, A_0 = 0, \mu > 0, m_0 = 70 \text{ GeV}$
- DØ: $\tan \beta = 3, A_0 = 0, \mu > 0, m(\ell) > m(\chi_2^0)$

Search for Gauge Mediated SUSY

- SUSY breaking at scale Λ mediated by gauge fields
- Gravitino is LSP, neutralino or stau is NLSP
 - Neutralino NLSP decays to gravitino $\chi_1^0 \rightarrow \gamma G$
 - Stau NLSP signature is massive long-lived charged particles
- No excess seen; DØ combined stau/ $\gamma\gamma$ MET limit: $\Lambda > 92 \text{ TeV}$

Search for SUSY Higgs in 3b Final State

- Minimal supersymmetry has 2 Higgs doublets H_u, H_d
 - 5 Higgs bosons: h, H, A, H⁺, H⁻
 - At tree level, two independent parameters: m_A and $tan\beta \equiv \langle H_u \rangle / \langle H_d \rangle$
 - For large tan β , production cross section enhanced by a factor tan² β

Search for SUSY Higgs in $\tau\tau$ Channel

Search for Excited Gauge Bosons

- Additional gauge bosons predicted by many theories
- No evidence for W' or Z' in Tevatron data
 - Set mass limits assuming SM couplings

Search for 2nd Generation Leptoquarks

- Models providing a natural explanation for the parallels between quarks and leptons often require leptoquarks
- DØ search for scaler leptoquarks in the μvjj final state

 $m_{SLQ2} > 214 \text{ GeV} @ 95\% \text{ CL for } \beta = 0.5$

Richard Partridge

Search for 3rd Generation Leptoquarks

- New DØ search in the bbττ channel
 - LQ $\rightarrow tv_{\tau}$ kinematically suppressed

Richard Partridge

Search for Extra Dimensions

- Alternative solution to the hierarchy problem
- Randall-Sundrum model:
 - Gravity on a 3+1D Planck brane
 - Planck brane separated from the SM brane by a warped 5th dimension
 - Only gravitons propagate in the region between branes
 - Graviton wave function falls exponentially gravity weak on SM brane
 - Kaluza-Klein excitations with ~1 TeV spacing, couple to SM particles

Search for Extra Dimensions

• Signature: narrow resonances in $\gamma\gamma$ or ee final state

No resonance seen; set limit on coupling and graviton mass

Richard Partridge

Conclusions

- Still cooking with the same old ingredients
- Most searches shown from ~1 fb⁻¹ samples
- Sensitivity of many searches will improve with luminosity
- ◆ Expect ~6-8 fb⁻¹ in Run II
- LHC is on the horizon the sooner we come up with new ingredients the better

(stolen from talk by C. Magass)