13th Lomonosov Conference on Elementary Particle Physics, Moscow 2007

LHCb Physics, Status, and Perspectives

Bernhard Spaan Universität Dortmund

on behalf of the LHCb Collaboration

Motivation
CP Violation, Search for New Physics
LHCb
Design, Status, Physics
Conclusions

Supported by bmbf:

bmb+f - Förderschwerpunkt

LHCb

Großgeräte der physikalischen Grundlagenforschung

CP-Violation in the Standard Model

Standard model: Origin of CP-Violation: Higgs-Sector! ⇒Cabibbo Kobayashi Maskawa (CKM) Matrix

CKM Matrix:

Test of the Standard Model wrt origin of CP Violation

 \Rightarrow test unitarity of CKM matrix!

$$V_{ud} \cdot V_{ub}^{*} + V_{cd} \cdot V_{cb}^{*} + V_{td} \cdot V_{tb}^{*} = 0$$

$$V_{ud} \cdot V_{td}^{*} + V_{us} \cdot V_{ts}^{*} + V_{ub} \cdot V_{tb}^{*} = 0$$

Representation as "Unitarity Triangles":

Unitarity Test of the CKM-Matrix:

$$V_{ud} \cdot V_{td}^* + V_{us} \cdot V_{ts}^* + V_{ub} \cdot V_{tb}^* = 0$$

Unitarity Test:

⇒ overconstrain Unitarity Triangles
⇒ determine angles and magnitude of sides

CKM Parametrizations

V has 4 observable parameters and an infinite number of choices for these 4

\mathcal{CP} in Interference between Mixing and Decay $B^0 \rightarrow J/\psi K_S$ and $B_s \rightarrow J/\psi \phi$

New Physics may influence mixing Phase! $\Rightarrow\beta$ shifted!

An Observation of CP Violation \Rightarrow New Physics!

Rare decays

Small

Branching

More interesting (penguin) mediated modes:

e.g.
$$B \rightarrow \phi \gamma, K^{(*)} \gamma, K^{(*)} \ell \ell, \mu^+ \mu^{\text{Fractions}}$$

LHCb Physics Programme

rare decays

Victor Egorychev

precision measurements of CKM angles

Sergey Barsuk

Search for New Physics

B production, B_c , b-baryon physics charm decays (e.g. D-mixing) tau lepton flavour violation

B production in pp Collisions at $\sqrt{s} = 14$ TeV (LHC)

Interactions of 2 partons (quarks, gluons) with fractional momenta x_i

Examples:

B production

LHC environment

- Bunch crossing frequency: 40 MHz
- $\sigma_{inelastic} = 80 \text{ mb}$ \rightarrow at high L >> 1 pp collision/crossing \Rightarrow run at $< L > \sim 2 \times 10^{32} \text{ cm}^{-2}\text{s}^{-1}$ \rightarrow dominated by single interactions
- in acceptance region: $\sigma_{bb} \cong 230 \ \mu b$ \Rightarrow collect $10^{12} \ b\overline{b}$ events/year
- Beams are less focused locally to maintain optimum luminosity even when ATLAS and CMS run at $<L> \sim 10^{34} \, {\rm cm}^{-2} {\rm s}^{-1}$
- Reconstruction easier
 - e.g. b-quark vertex identification
- Lower radiation level
- LHCb-detector must be able to operate in a high rate and high multiplicity environment

Time Resolved Measurements

\rightarrow sin2 β , sin2 α , (γ), sin2 χ , etc., Oscillations Measurements, ...

Flavour-determination of other b-Quark ("tag") \Rightarrow Flavour of B_{rec} at t=0

 B_{s}

 K^+

Determination of $t = \ell / \beta \gamma c$ *ℓ* typically 1 cm **Proper time res.:** ~ 40 fs

 opposite side lepton and kaon tag •same side kaon tag (for B_s) •opposite B vertex charge tagging

 π^{+}

$$B_d^0 : \varepsilon_{tag} (1 - 2w)^2 \cong 4 - 5\%$$
$$B_s^0 : \varepsilon_{tag} (1 - 2w)^2 \cong 7 - 9\%$$

7 - 9%

Exclusive B-reconstruction (e.g. CP Eigenstates) \Rightarrow Measure momentum *p* from decay products (1-100 GeV/c) \Rightarrow Identify decay products (Leptons, π/K separation)

Primary Vertex res: ~50 μm in z, ~10 μm in xy **Secondary Vertex res.:** ~100 μ m in z, ~10 μ m in x,y

LHCb - Cavern

LHCb

LHCb

Forward spectrometer (running in pp collider mode) Inner acceptance 10 mrad from conical beryllium **beam pipe**

Vertex Locator (VELO)

•21 VELO stations (r and φ silicon sensors)
•Placed in a secondary vacuum vessel
•3cm separation, 8mm from beam
•Separated by a 300 μm of Al RF foil
•Detector halves retractable for injection
•~ 30 μm impact-parameter resolution

Tracking

Tracking system and dipole magnet to measure angles and momenta B-mass resolution ~ 15 MeV, $\Delta p/p \sim 0.4$ % Magnetic field will be reversed to reduce experimental systematics

Trigger Tracker Silicon strips p_T information for trigger

Particle Identification - RICH

Two **Cherenkov** detectors (**RICH**) for charged hadron identification \Rightarrow excellent π -K separation for momenta up to 100 GeV/c

RICH

Readout: Hybrid PhotoDiodes HPD – 1024 pixels – LHCb development

RICH Detectors

3 radiators: RICH1 Aerogel (2-10 GeV), C_4F_{10} (10-60 GeV) RICH2 CF_4 (16-100 GeV)

Calorimeters

Calorimeter system (Preshower PS/SPD, ECAL and HCAL) provides Identification of electrons, hadrons and neutrals Important for the first level of the trigger Major russian contribution to the experiment!

Muon System

Muon system to identify muons, also used in first level of trigger Efficiency \sim 95% for pion misidentification rate < 1%

Trigger

Efficient and selective trigger crucial for LHCb:

10 MHz (visible bunch crossings)

Hardware trigger (L0) \succ Fully synchronized (40 MHz), 4 μ s fixed latency \succ High p_T particles: μ , $\mu\mu$, e, γ and hadron \succ (typically p_T ~1-4 GeV/c) \succ reject multiple interactions (PileUp system) 1 MHz (readout of all detector compnents) Software trigger (HLT)

Full detector info available, only limit is CPU time

Use more tracking info to re-confirm L0 decision + high IP

> Full event reconstruction: exclusive and inclusive streams L0×HLT efficiency tuned for specific final states PC farm of ~1000 nodes

 \leq 2 kHz (storage: event size ~35kB)

(multicore)

Simulated Event

	Performance	figures	(1 year	, 2 fb ⁻¹)
	Channel	Yield	B/S	Precision
γ	$B_s \rightarrow D_s^{-+} K^{+-}$	5.4k	< 1.0	σ (γ)~ 13 ΄
	$B_d \rightarrow \pi^+ \pi^-$	36k	0.46	Perfect U-S
	$B_{\mathtt{S}} \to K^{\!+}K^{\!-}$	36k	< 0.06	
	$B_d \rightarrow D^0 (K\pi, KK) K^{*0}$	3.4 k, 0.5 k 0.6 k	<0.3, <1.7,	$\begin{bmatrix} D_s \rightarrow D_s \mathbf{A} \\ \mathbf{e} \end{bmatrix}$
	$B^- \rightarrow D^0 (K^- \pi^+, K^+ \pi^-) K^-$	28k, 0.5k	0.6, 4.3	
	$B^- \rightarrow D^0 (K^+ K^-, \pi^+ \pi^-) K^-$	4.3 k	2.0	$B_{u,d} \to DK$
	$B^- \rightarrow D^0 (K_S \pi^+ \pi^-) K^-$	1.5 - 5k	< 0.7	$\Rightarrow \sigma(\gamma) \cong 4^{\circ}$
α	$B_d \rightarrow \pi^+ \pi^- \pi^0$	14k	< 0.8	σ(α) ~ 10°
	$B \rightarrow \rho^+ \rho^0, \rho^+ \rho^-, \rho^0 \rho^0$	9k, 2k, 1k	1, <5, < 4	σ (α)~ 8΄-14 ΄
β	$B_d \rightarrow J/\psi(\mu\mu)K_S$	216k	0.8	σ(sin2β) ~ 0.022
∆ms	$B_s \rightarrow D_s^- \pi^+$	80k	0.3	$\sigma(\Delta m_s) \sim 0.01 \text{ ps}^{-1}$
фs	$B_s \rightarrow J/\psi(\mu\mu)\phi$	131k	0.12	σ(φ _s) ~ 1.3°
Rare decays	$B_s \rightarrow \mu^+ \mu^-$	17	< 5.7	
	$B_{d} \to K^{\star 0} \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -}$	7.7 k	0.5	$\sigma(C_7^{eff}/C_9^{eff}) \sim 0.13$
	$B_{d} \to K^{\star 0} \gamma$	75k	0.71	σ(A _{CP}) ~0.01
	$B_s \rightarrow \phi \gamma$	11.5k	<0.95	
charm	$D^{*+} \rightarrow D^0 (K^- \pi^+) \pi^+$	100 M		

e.g. DD Mixing

cand / 0.01 ps bir

60 50 40

30E

20E

 ${}^{so} \mathbf{f} \sigma_{\tau} \cong 45 \, \mathrm{fs} \, \mathbf{J}$

34.65 / 45

12.83 ± 0.37

0.5255 ± 0.0778

0.1114+ 0.0101

 0.001338 ± 0.002034

0.04498 ± 0.00397

/ nd

Mean

Normalizatio

Core fraction

Core sigma

Second sigma

Mixing modifies exponential decay-time distribution:

Conclusions

LHCb: a dedicated B-Physics Experiment at LHC all B-Hadron species are accessible huge statistics compared to B-Factories

Construction of the experiment is progressing well

- Commissioning started
- ready for data taking in 2008 \Rightarrow full detector
- ready for early physics competitive measurements even with low LHC luminosity! (e.g. γ, χ, Δm_s , B_s→μμ,)

LHCb will contribute significantly to the search for New Physics! via precise and complementary measurements of CKM angles and of rare decays

LHCb also started to investigate option for a possible detector upgrade \rightarrow SuperLHCb