

Jet and Photon Production at the Tevatron

Sasha Pronko

Fermilab For CDF and DØ Collaborations

Sasha Pronko

Talk Outline

o In this talk

- New results since summer 06 based on $/\!\!\!/ L \ge 1~fb^{-1}$ of data
 - Inclusive jet production
 - Dijet production (jj, b-bbar)
 - γ +jet triple differential cross section
 - Inclusive Z+jets and Z+b-jet production
 - W+c-jet production

o Other results (not in this talk)

- There are many more interesting analyses...
 - Jet fragmentation, underlying event, etc.

Tevatron in Run II

- o 36×36 bunches
- o Collisions every 396 ns
- Two experiments: CDF & DØ

- o Proton-antiproton collisions at $\sqrt{s=1.96 \text{ TeV}}$
- o Delivered luminosity
 - Current: 3.3 fb⁻¹ per experiment
 - Goal by 2009: 5-8 fb⁻¹

Collider Run II Integrated Luminosity

Sasha Pronko

CDF and **DØ** Experiments

- Multipurpose detectors classic design
 - "silicon", central tracker, solenoid, calorimeter, muon chambers
- Operating well: 80-90% efficiency
- o Broad physics program
 - QCD, EWK, top, B-physics, Higgs searches, searches for new physics

Jet Production at Hadron Collider

o Jets

 collimated sprays of particles

 experimental signatures of quarks and gluons from hard processes

o Theory deals with partons

- Need well defined jet clustering algorithm (e.g., MidPoint cone or k_T – infrared & collinear safe)
 - Need set of corrections for
 - Underlying event & multiple interaction
 - Detector effects (Jet Energy Scale):dector→hadron
 - Hadronization effects: hadron-parton

Measurements with Jets

Sasha Pronko

Inclusive Jet Production (DØ)

• MidPoint cone algorithm

-
$$\Delta R=0.7$$
, $f_{merge}=0.5$

- Two central rapidity regions
 - $|y_{jet}| < 0.4; 0.4 < |y_{jet}| < 0.8$
- Comparison to NLO predictions after unsmearing
 - PDF uncertainty \approx syst. uncertainty
 - Experimental uncertainty dominated by uncertainty on jet energy scale (JES)

Sasha Pronko

Inclusive Jet Production (CDF)

- MidPoint cone algorithm: $\Delta R=0.7$, $f_{merge}=0.75$
- o 5 rapidity bins: 0.1,0.7,1.1,1.6,2.1
- Consistent with NLO predictions after unsmearing
 - Experimental uncertainty dominated by JES

Experimental uncertainty in forward region smaller than PDF uncertainty!!

- Theory uncertainty mainly from PDFs

Sasha Pronko

Inclusive Dijet Production (CDF)

- o Test of pQCD
- Sensitive to new physics: massive particles, compositeness
- o MidPoint cone algorithm: $\Delta R=0.7$, $f_{merge}=0.75$
- o Two central jets: |y_{jet1,2}|<1.0
- o Consistent with NLO predictions after unsmearing
 - Experimental uncertainty (mostly JES) ~ PDF uncertainty

Sasha Pronko

bb Dijet Production (CDF)

Leading order processes

- o *b*-jet production
 - Signature of many important EWK and new physics processes
 - Understanding b-jet production proved to be a challenge in QCD
 - Sensitivity to different production mechanisms:
 - + LO processes at large $\Delta \phi;$ NLO processes at small $\Delta \phi$
- o CDF analysis based on $\int \mathcal{L}=260 \text{ pb}^{-1}$ of data
 - 2 jets (cone algorithm, R=0.4) with $E_{T,1}$ >35 and $E_{T,2}$ >32; $|\eta|$ <1.2
 - Both jets b-tagged by displaced secondary vertex on L2 trigger and offline (sample purity is 85%)

bb Dijet Production (CDF)

- o differential dijet cross sections vs. $E_{T,1}$, M_{jj} , $\Delta \phi$
- o $\Delta \phi$ very sensitive to NLO contributions
- o LO predictions (using CTEQ5L): Pythia Tune A, Herwig+Jimmy
 - Fails to describe small $\Delta \phi$
- o NLO predictions: MC@NLO(CTEQ6M)+Jimmy
 - describes data well in almost entire phase space

Sasha Pronko

- o Direct isolated γ 's come unaltered (by fragmentation/hadronization) from hard scattering
- o Well known coupling to quarks
- o Well measured (unlike jets) P_{T}^{γ}
- o qg dominates at $P_T^{\gamma} < 150$ GeV
 - Constrain gluon PDFs?
 - Requires improved theory (resummation & NNLO)

- o $\sigma(\gamma)/\sigma(jets) \sim 10^{-3} \rightarrow$ challenging measurement
 - Main background: π^0/η from jets
 - Isolation to reduce background due to jets
 - Dominant experimental uncertainty: photon purity

- o Central isolated photon
 - $P_T > 30 \text{ GeV}; |\eta_{\gamma}| < 0.8$
- o Leading jet with $P_T > 15$ GeV
 - Central $|\eta_{jet}| < 0.8$; forward 1.5< $|\eta_{jet}| < 2.5$
- o 4 regions
 - Central-central (CC) & centralforward (CF) of 2 kinds
 - Same sign (SS): $\eta_{jet} * \eta_{\gamma} > 0$
 - Opposite sign (OS): $\eta_{jet} * \eta_{\gamma} < 0$
 - Different sensitivity to Compton and annihilation contributions
- o Triple differential cross section
 - First measurement of this kind
- o Comparison to NLO predictions
 - JETPHOX with CTEQ6.1M PDFs and BFG fragmentation functions

Sasha Pronko

Sasha Pronko

Inclusive Z+jet Production (CDF)

- o Boson+jet production
 - Test of pQCD at large Q
 - Major background for many searches
- o CDF analysis
 - $\int \mathcal{L}=1.7 \text{ fb}^{-1} \text{ of data}$
 - Two CC or CF electorns with $E_{\rm T}{>}25~GeV$ and $66{<}M_{ee}{<}116~GeV$
 - Jets reconstructed with MidPoint algorithm (R=0.7, f_{merge}=0.75); P_T^{jet}>30 GeV, |y_{jet}|<2.1
- Good agreement with NLO predictions

Sasha Pronko

Inclusive Z+jet Production (CDF)

Sasha Pronko

Z+b-jet Production (CDF)

- o Probes heavy flavor content of proton
- Major background for many searches (e.g., ZH, H→bb)
- CDF analysis based on $\int \mathcal{L}=1.5 \text{ fb}^{-1}$:
 - Z \rightarrow ee or $\mu\mu$; 66 GeV < M_Z < 116 GeV
 - Jets reconstructed with cone algorithm (R=0.7); E_T^{jet} >20 GeV, $|\eta^{jet}|$ <1.5
 - B-jet identification: secondary vertex tagging
 - Data is somewhat higher that NLO predictions

E _T ^{jet} >20 GeV, η ^{jet} <1.5 R _{jet} =0.7	CDF Run II Preliminary measurement	ΡΥΤΗΙΑ	MCFM NLO	MCFM NLO + UE + hadr.
σ(Z+ <i>b</i> -jet)	$0.94 \pm 0.15 \pm 0.15$ (pb)		0.51 pb	0.56(pb)
σ(Z+ <i>b</i> -jet)/ σ(Z)	0. 369±0.057± 0.055%	0.35 %	0.21 %	0.23 %
σ(Z+ <i>b</i> -jet)/ σ(Z+jet)	$2.35 \pm 0.36 \pm 0.45 \ \%$	2.18 %	1.88 %	1.77 %

W+c-jet Production (DØ)

- o W+c/b production
 - Signature of many new physics processes
 - No measurements for W+c
 - Direct sensitivity s-quark PDFs
- o DØ analysis
 - $W \rightarrow I_V$: μ/e with $P_T > 20$ GeV; MET>20 Gev
 - Jets: MidPoint (R=0.5); P_T>20 GeV; |η|<2.5
 - c-jet: "µ-tagged" jet; P_T^µ>4
 GeV; |η|<2.0; ΔR(µ, jet)<0.5;
 q_cq_W<0 (OppositeSign=signal, SameSign used for background)

$$\frac{\sigma(W+c)}{\sigma(W+jets)} = 0.071 \pm 0.017$$

In agreement with Alpgen+Pythia: 0.040±0.003

Summary

- o Improved theoretical predictions (NLO calculations, ME-PS matching, PDFs) provide good description of data in wider P_T and rapidity range than before
- With ~2.7 fb⁻¹ on tape and 2-5 fb⁻¹ still to come, expect more exciting results
 - Already at 1 fb⁻¹: experimental uncertainties ~ PDF uncertainties
 - Extended reach in $P_{\rm T}$ and rapidity
 - Small x-section processes (heavy flavor, $\gamma\gamma$, etc.)
- o LHC will benefit a lot from QCD studies at Tevatron
 - Better understanding of QCD backgrounds for new physics

Backup slides

Inclusive Jet Production with k_T (CDF)

Sasha Pronko

bb Dijet Production (CDF)

CDF Run II Preliminary	σ [pb]		
	$ \eta_{1,2} < 1.2, E_{T,1} > 35 { m GeV}, E_{T,2} > 32 { m GeV}$		
Data	$\sigma=5664\pm168~{ m (stat.)}\pm1270~{ m (syst.)}$		
Pythia (CTEQ5L) Tune A	$\sigma = 5136 \pm 52 \text{ (stat.)}$		
Herwig (CTEQ5L) + Jimmy	σ = 5296 ± 98 (stat.)		
MC@NLO (CTEQ6M) + Jimmy	$\sigma=5421\pm105~{ m (stat.)}$		

Sasha Pronko

Sasha Pronko

Z+b-jet Production (CDF)

Z+ b jet. CDF RUN II Preliminary

b, c and light fractions determined from the template fit of the secondary vertex mass distributions

Source of Uncertainty	Uncertainty $(\%)$	U 140 V5=1.96 TeV U 140 V5=1.96 TeV U 120 L ~ 1.5 fb ⁻¹ U 12
jet energy scale	1.5	tig ^{1−} = E ^r _i 20 GeV C Jets 100 η ^{kt} <1.5 b jets
b jet energy scale	1.0	
MC η^{jet} dependence	3.8	
$MC E_T^{\text{jet}}$ dependence	10	
b tagging efficiency	4.1	
single/double b/c quark in jet	4.6	Z h jet CDE RUN II Preliminary
track reconstruction efficiency	7.7	and the second
b hadron multiplicity	0.8	5 E Ns=1.96 TeV Ight jets 9 80 EL ~ 1.5 fb ⁻¹ cjets
fake lepton background	2.4	$\begin{array}{c} 70 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
other backgrounds	0.4	[∞] →→→+↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓
Z selection efficiency	1.8	┉╞ ╗╞╴┍┿┚╴╺╾╸╹┍┶┶┶┙╶╫╴╶╛
luminosity	5.8	
total	16	

Sasha Pronko