
Beyond the SM studies with ATLAS

Gökhan Ünel (U.C.Irvine & CERN) for the ATLAS Collaboration

XIIIth Lomonosov Conference - Moscow 23 - 29 August 2007

SM ingredients

- Fermions as matter particles
 - Quarks & Leptons

- ▶ Gauge group structure
 - gauge bosons as force carriers

- ▶ EW Symmetry Breaking
 - mass via Higgs bosons

SM ingredients

- Fermions as matter particles
 - Quarks & Leptons

- ▶ Gauge group structure
 - gauge bosons as force carriers

- ▶ EW Symmetry Breaking
 - mass via Higgs bosons

- ▶ SM can not be the final theory:
 - Hierarchy problem: δH ~ MH
 - EW and Strong forces not unified
 - Arbitrary fermion masses & mixings
 - Arbitrary number of families
 - Unknown source of baryogenesis

- Fermions as matter particles
 - Quarks & Leptons

- ▶ Gauge group structure
 - gauge bosons as force carriers

- ▶ EW Symmetry Breaking
 - mass via Higgs bosons

- Fermions as matter particles
 - Quarks & Leptons

- ▶ Gauge group structure
 - gauge bosons as force carriers

- ▶ EW Symmetry Breaking
 - mass via Higgs bosons

- ▶ Fermions as matter particles
 - Quarks & Leptons

- ▶ Gauge group structure
 - gauge bosons as force carriers

- ▶ EW Symmetry Breaking
 - mass via Higgs bosons

Fourth Family

- Fermions as matter particles
 - Quarks & Leptons

new quarks new leptons lepto-quarks new constituents models

- ▶ Gauge group structure
 - gauge bosons as force carriers

- ▶ EW Symmetry Breaking
 - mass via Higgs bosons

Fourth Family

Fermions as matter particles

Quarks & Leptons

new quarks new leptons lepto-quarks

new constituents composite models

- ▶ Gauge group structure
 - gauge bosons as force carriers

new gauge bosons

- ▶ EW Symmetry Breaking
 - mass via Higgs bosons

Fourth Family

Fermions as matter particles

Quarks & Leptons

new quarks new leptons lepto-quarks

new constituents composite models

Gauge G

▶ Gauge group structure

gauge bosons as force carriers

new gauge bosons

- ▶ EW Symmetry Breaking
 - mass via Higgs bosons

Fourth Family

Fermions as matter particles

Quarks & Leptons

new quarks new leptons lepto-quarks

new constituents composite models

GUTs

▶ Gauge group structure

gauge bosons as force carriers

Gauge G

new gauge

- ▶ EW Symmetry Breaking
 - mass via Higgs bosons

Fourth Family

Fermions as matter particles

Quarks & Leptons

new quarks new leptons lepto-quarks

new constituents composite models

GUTs

▶ Gauge group structure

gauge bosons as force carriers

Gauge G

new gauge bosons

- ▶ EW Symmetry Breaking
 - mass via Higgs bosons

new EWSB

Fourth Family

Fermions as matter particles

Quarks & Leptons

new quarks new leptons lepto-quarks

new constituents composite models

GUTs

▶ Gauge group structure

gauge bosons as force carriers

Gauge G

new gauge bosons

- ▶ EW Symmetry Breaking
 - mass via Higgs bosons

new EWSB

Dynamical Symmetry Breaking

Fourth Family

Fermions as matter particles

Quarks & Leptons

new quarks new leptons lepto-quarks

new constituents composite models

GUTs

▶ Gauge group structure

gauge bosons as force carriers

Gauge G

new gauge bosons

- ▶ EW Symmetry Breaking
 - mass via Higgs bosons

new EWSB

▶3+1 space-time

Dynamical Symmetry Breaking

Fourth Family

Fermions as matter particles

Quarks & Leptons

new quarks new leptons lepto-quarks

new constituents composite models

GUTs

▶ Gauge group structure

gauge bosons as force carriers

Gauge G new gauge bosons

▶ EW Symmetry Breaking

mass via Higgs bosons

new scalars new EWSB

▶3+1 space-time

Dynamical Symmetry Breaking

Fourth Family

Fermions as matter particles

Quarks & Leptons

new quarks new leptons lepto-quarks

new constituents composite models

GUTs

▶ Gauge group structure

gauge bosons as force carriers

Gauge G

new gauge bosons

Little Higgs

▶ EW Symmetry Breaking

mass via Higgs bosons

new scalars new EWSB

▶3+1 space-time

Dynamical Symmetry Breaking

Fourth Family

Fermions as matter particles

Quarks & Leptons

new quarks new leptons lepto-quarks

new constituents composite models

GUTs

Gauge G

▶ Gauge group structure

gauge bosons as force carriers

new gauge bosons

Little Higgs

▶ EW Symmetry Breaking

mass via Higgs bosons

2HDMs

new scalars

new EWSB

▶3+1 space-time

Dynamical Symmetry Breaking

Fourth Family

Fermions as matter particles

Quarks & Leptons

new quarks new leptons lepto-quarks

new constituents composite models

GUTs

▶ Gauge group structure

gauge bosons as force carriers

Gauge G new gauge bosons

Little Higgs

▶ EW Symmetry Breaking

mass via Higgs bosons

2HDMs

new scalars

new EWSB

▶3+| space-time

new dimensions **Dynamical** Symmetry Breaking

Fourth Family

Fermions as matter particles

Quarks & Leptons

new quarks new leptons lepto-quarks

new constituents composite models

GUTs

▶ Gauge group structure

gauge bosons as force carriers

Gauge G new gauge bosons

Little Higgs

▶ EW Symmetry Breaking

mass via Higgs bosons

2HDMs

new scalars

new EWSB

▶3+| space-time

new dimensions

Dynamical Symmetry Breaking

Technicolor

RS Model

Fourth Family

Fermions as matter particles

Quarks & Leptons

new quarks new leptons lepto-quarks

new constituents composite models

GUTs

▶ Gauge group structure

gauge bosons as force carriers

Gauge G new gauge bosons

Little Higgs

▶ EW Symmetry Breaking

mass via Higgs bosons

2HDMs

new scalars

new EWSB

▶3+1 space-time

new dimensions

RS Model

ADD Models

Dynamical Symmetry Breaking

Fourth Family

Fermions as matter particles

Quarks & Leptons

new quarks

new leptons | lepto-quarks |

new constituents composite models

GUTs

Gauge G

▶ Gauge group structure

gauge bosons as force carriers

new gauge bosons

Little Higgs

▶ EW Symmetry Breaking

mass via Higgs bosons

2HDMs

new scalars

new EWSB

▶3+| space-time

new dimensions **RS Model**

ADD Models

Dynamical Symmetry Breaking

Fourth Family

Fermions as matter particles

Quarks & Leptons

new quarks

new leptons | lepto-quarks

new constituents composite models

GUTs

▶ Gauge group structure

gauge bosons as force carriers

Gauge G new gauge bosons

Little Higgs

▶ EW Symmetry Breaking

mass via Higgs bosons

2HDMs

new scalars

new EWSB

▶3+1 space-time

new dimensions

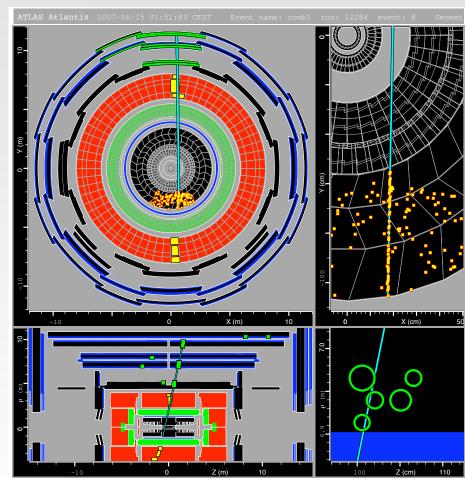
RS Model

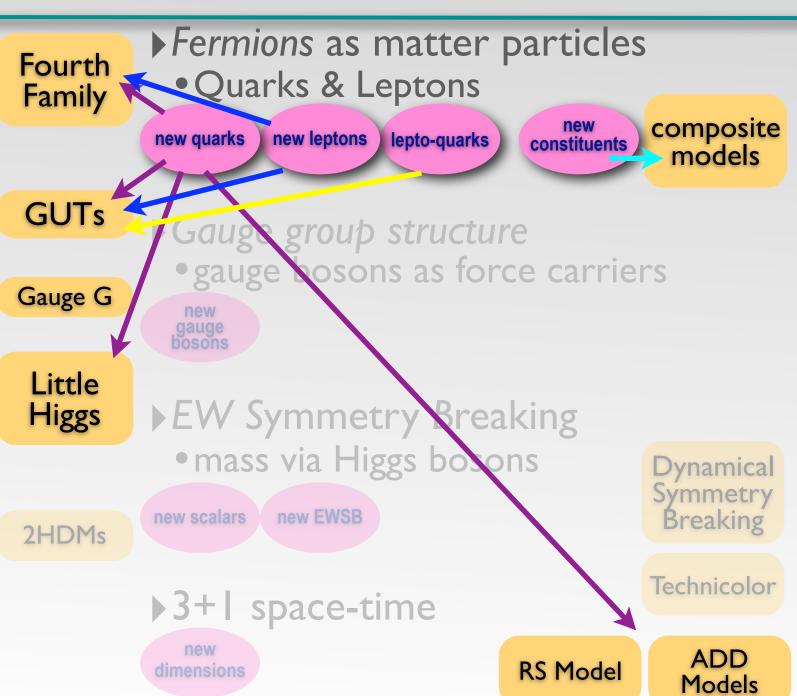
ADD Models disclaimer:

Technicolor

Dynamical Symmetry

Breaking


For the rest of the talk, a search based approach will be followed.


Gearing up

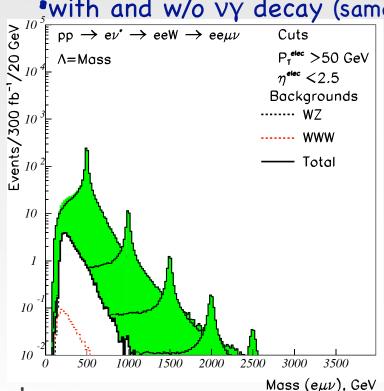
- LHC at $\sqrt{s}=14$ TeV starts in 2008
 - aims to reach 100 fb⁻¹/yr at 2010
- ▶ ATLAS detector installation & commissioning ongoing
 - Preparations with technical and cosmic runs

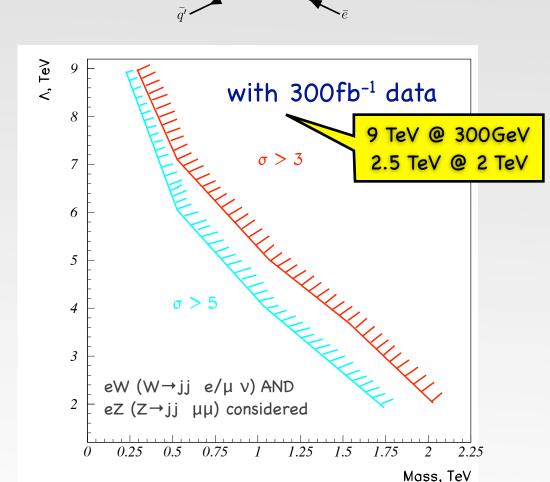
ATLAS experiment will provide unprecedented opportunity to probe the BSM physics

New constituents excited vs*

predicted by: composite (preonic) models

 φ produced as: single $(\nu \nu^*/\nu^* e)$ via Z,W, γ

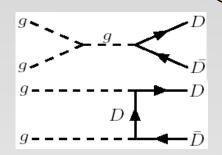

Secay via: boson + lepton: $\nu\gamma, \nu Z, eW$


Fast MC based study

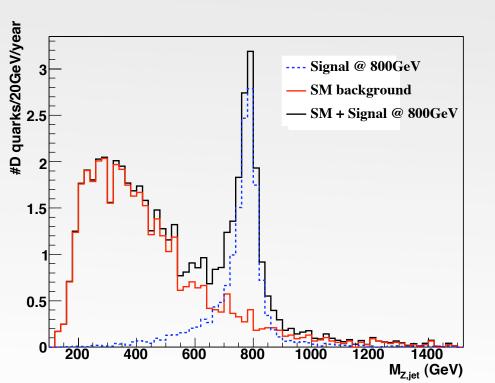
*scan neutrino mass: [500,..,2500]

•consider 2 coupling possibilities:

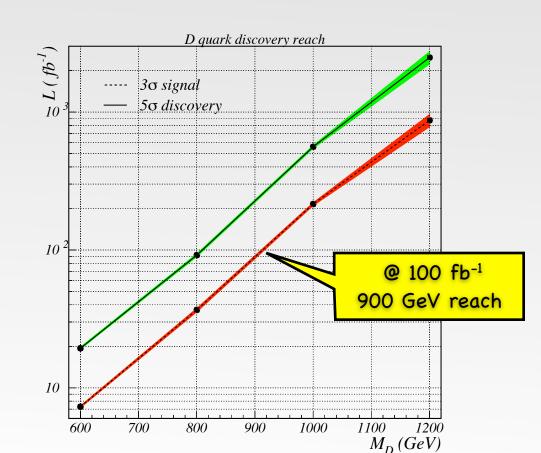
with and w/o νγ decay (same disc. limit)

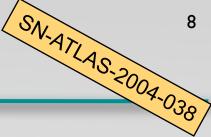

other excited fermions (e,q*) also studied in earlier works but not reported here.

SN-ATLAS-2006-056

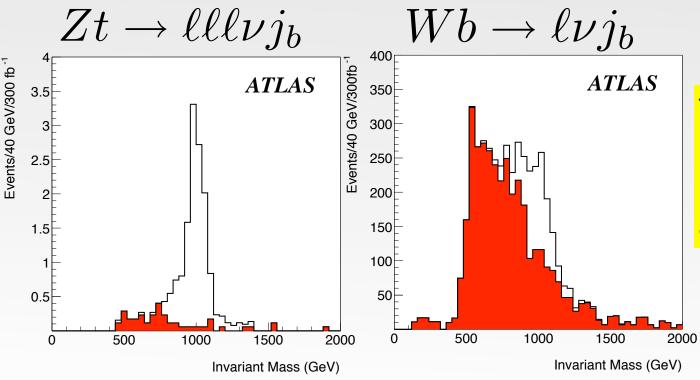

predicted by: E₆ GUT

produced as: pairs from gluon (quark) fusion


[©]decay via: boson + light jet



- *scan new quark mass
- *pair production is mixing independent



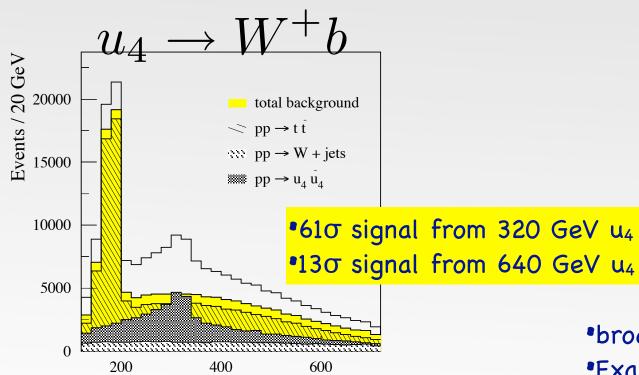
- predicted by: Little Higgs
- produced as: single from W exchange
- [©]decay via: boson + light jet

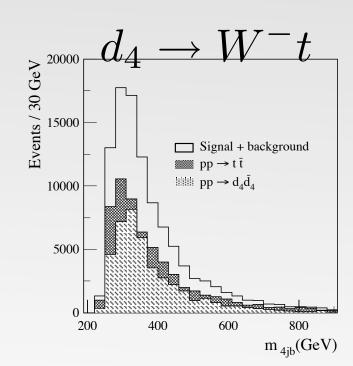
$$qb \rightarrow q'T \rightarrow q'Wb \ (ht, Zt)$$

- *Fast MC based study
- *function of T quark mass and t-T mixing
- *all 3 decay channels studied.

T is observable with 300 fb⁻¹: *up to ~2.5 TeV via Wb, •up to ~1.4 TeV via Zt. at maximum t-T mixing

New quarks doublets




predicted by: DMM

produced as: pairs from gluon (quark) fusion

decay via: W + jet (no FCNC)

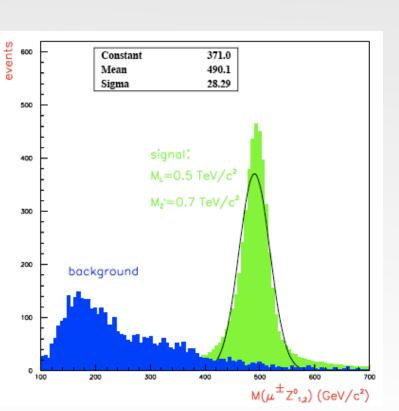
- *Fast MC based study
- *scan new quark mass
- *results for 100 fb-1 shown

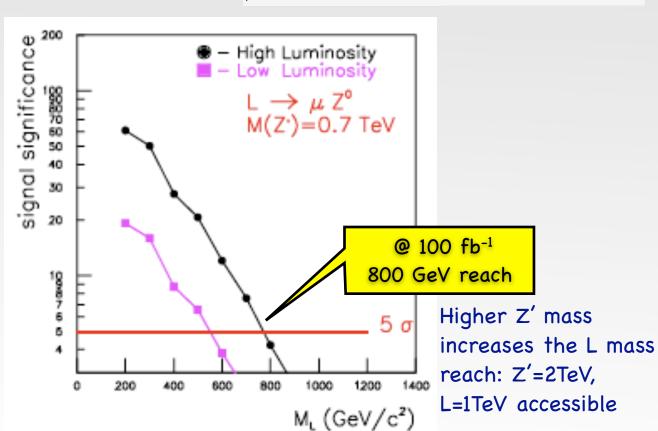
 $pp \to u_4 \bar{u}_4$ or $d_4 d_4$

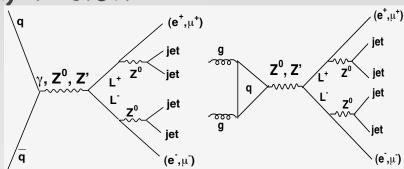
- *broad signal at 320 GeV d4
- Exact knowledge of BG shape needed

*new studies for other CKM mixings done, but not yet made public.

 $m_{i,i,b}(GeV)$


ATLAS-PHYS-2003-014


predicted by: Fourth family, E₆ GUT, technicolor...

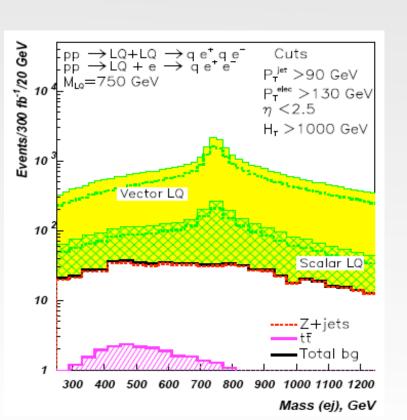

produced as: pairs from gluon (quark) fusion

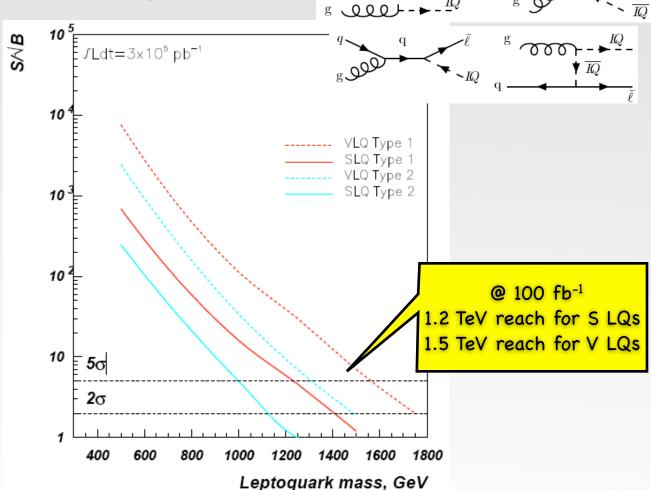
[©]decay via: boson + lepton

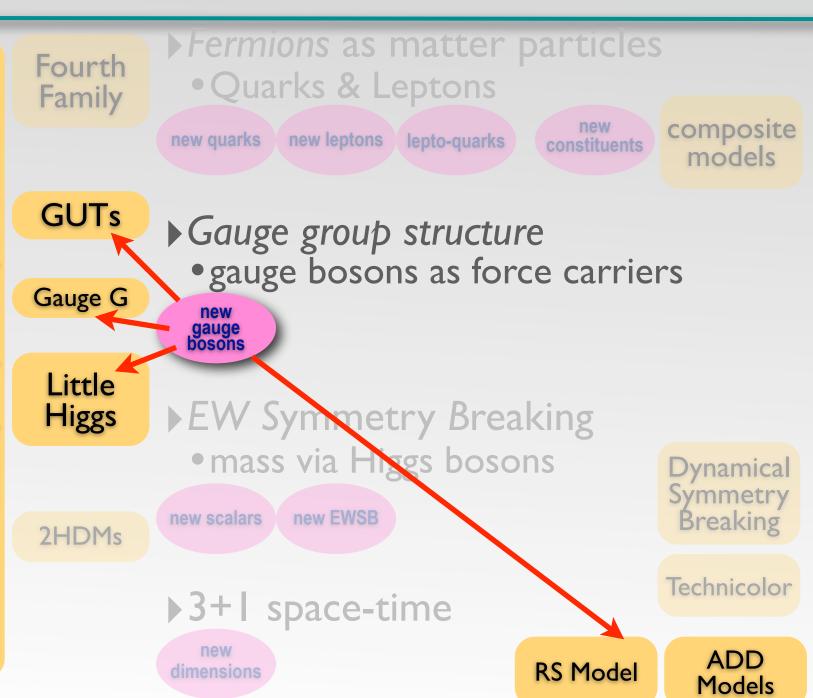
- *Fast MC based study
- function of L, Z' mass

Lepto-quarks

predicted by: GUTs & composite models


produced as: pairs + single from g-g (q) fusion


decay via: e(type1) or V(type2) + light jet

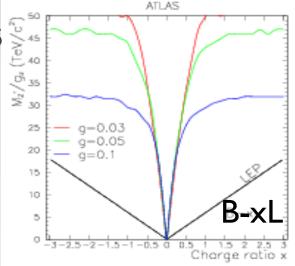

*Fast MC based study for Scalar & Vector LQs

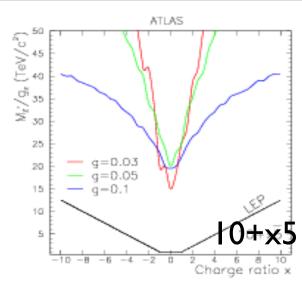
*Coupling K, $\lambda=e$ (for V)

*LQ-mass scanned

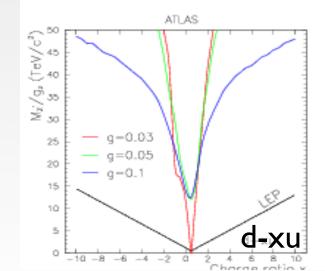
ATLAS-PHYS-PUB-2006-024

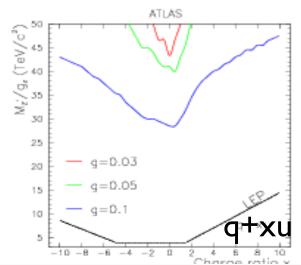
predicted by: SO(10), E₆.. GUTs, Little Higgs, EDs


produced as: from q-q annihilation

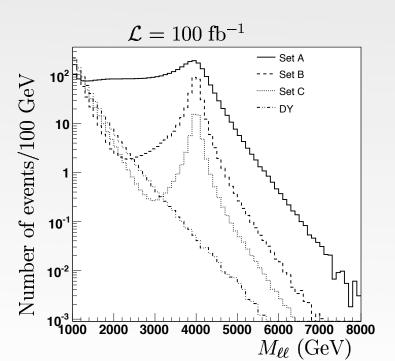

decay via: fermion pairs

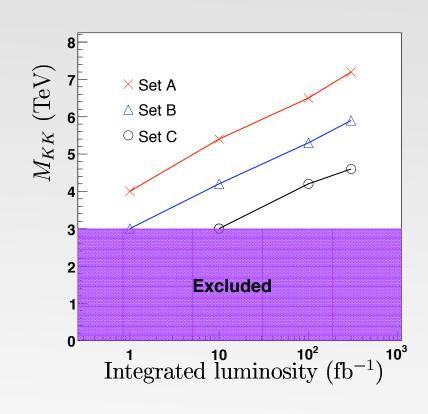
- *Full MC based study
- *1.5 & 4 TeV considered
- *CDDT parametrization shown
 - *g is global coupling strength
 - *x is fermion coupling
 - M is Z' mass


by G. Veramendi at Pheno 2005


	B- <i>x</i> L	q+ <i>x</i> u	10+ <i>x</i> 5	d- <i>x</i> u
$q_L = (u_L, d_L)$	+1/3	+1/3	+1/3	0
u _R	+1/3	+ x /3	-1/3	- x /3
d _R	+1/3	(2- x)/3	- <i>x</i> /3	+1/3
$I_L=(e_L, v_L)$	- <i>X</i>	-1	+ x /3	(x-1)/3
e _R	- <i>X</i>	-(2+ <i>x</i>)/3	-1/3	+x/3

results with 100 fb-1 of data shown


New bosons z

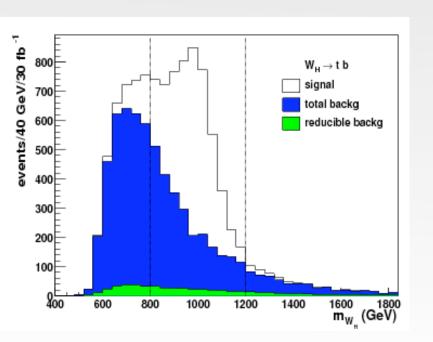

SN-ATLAS-2007-065

- predicted by: RS, ADD models
- produced as: from q-q annihilation

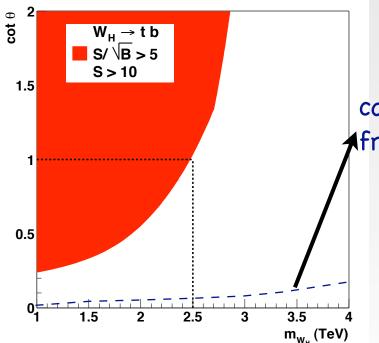
$$pp \to \gamma^n/Z^n \to \ell^+\ell^-$$

- [©]decay via: lepton pairs
 - *FULL simulation based study
 - •3 Parameter sets to reproduce the fermion masses & mixings (A, B, C)
 - only electrons were reconstructed

Discovery reach is about 6 TeV depending on the model for 100fb⁻¹ data.

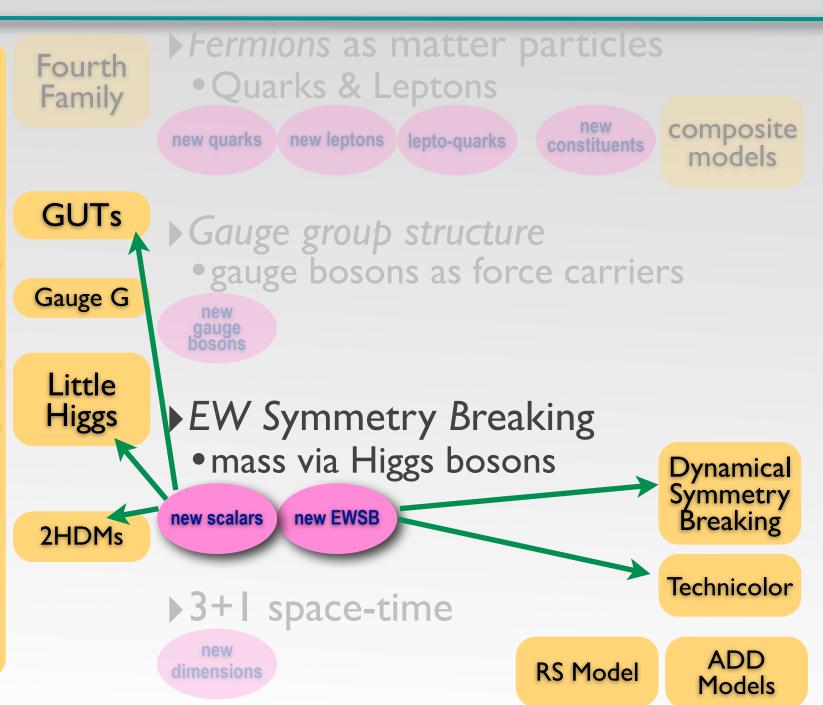

ATLAS-PHYS-PUB-2006-003

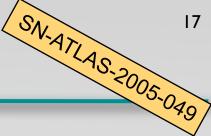
predicted by: SO(10), E6.. GUTs, Little Higgs, EDs


produced as: s channel from q-q' annihilation

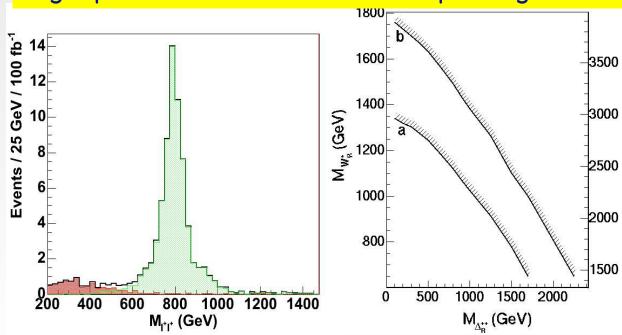
Edecay via: top-b $qq' o W' o tb o \ell
u bb$

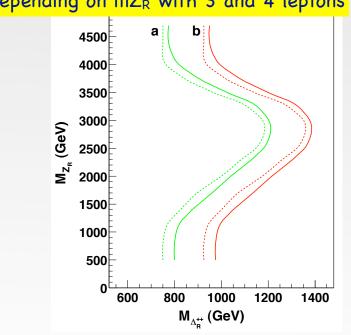
- *Fast MC based study
- •W-W_H coupling via cotθ
- *W_H mass 1 & 2 TeV considered




Discovery plane for 300fb⁻¹ data

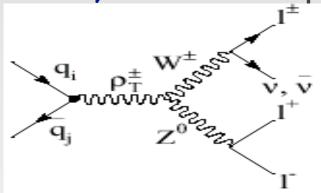
compare to W_H →eV from SN-ATLAS-2004-038


> Discovery reach is 6.5 TeV depending on the W-W_H mixing.

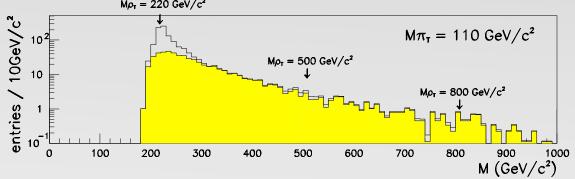


- predicted by: Little Higgs, LRSM
- produced as: pair via q-q annihilation & single via W fusion
- [©]decay via: lepton pairs
 - *Fast MC based study
 - •W⁺_R & Δ⁺⁺ mass scanned for min 10evts
 - •e,µ & ⊤ channels separately studied
 - •results for 100(a) & 300(b) fb⁻¹ shown

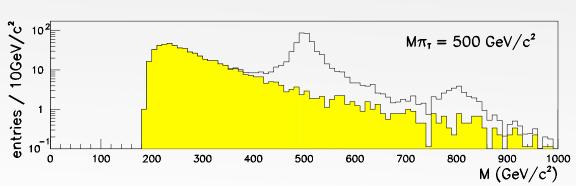
single production reach ~1.8TeV depending on mW+


pair production reach 1.1 TeV depending on mZ_R with 3 and 4 leptons

New EVVSB no scalar




- predicted by: Dynamical SB models, technicolor
- produced as: from q-q annihilation
- [©]decay via: boson pairs



- *Fast MC based study
- •Scan ρ_T mass for different π_T

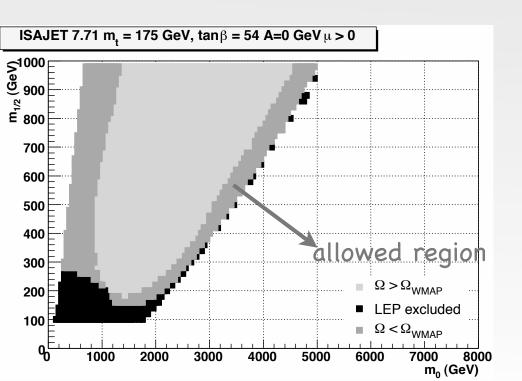
Discovery with 30fb⁻¹ data possible depending on model parameters

*new studies are available, but not yet public.

New EVSB susy

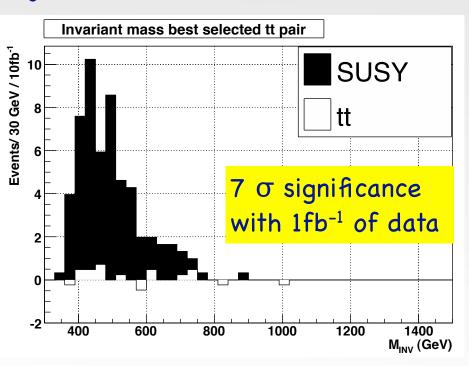
- Give up the (so far) observed "spin" asymmetry between matter and force carriers: partners for all SM particles
 - solves Fine Tuning, DM.. problems
- SUSY not observed: sparticles heavy: broken symmetry
- Rich phenomenology (even with Rparity):
 - large # of parameters: >100 in MSSM case^R
 - many SB options: MSSM, mSUGRA, GMSB, AMSB..
- ©Common properties:

has 5 parameter

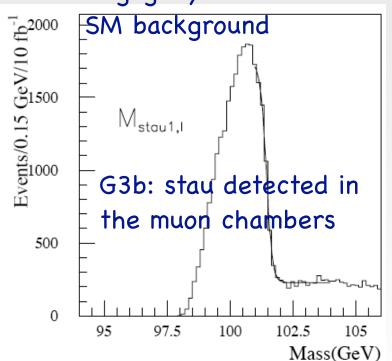

has 6 parameters

- cascade decays of sparticles to <u>high p_T objects</u> ,
- stable LSP escapes undetected: large E_Tmiss.

Look for: jets + E_Tmiss and leptons + jets + E_Tmiss


SN-ATLAS-2007-049

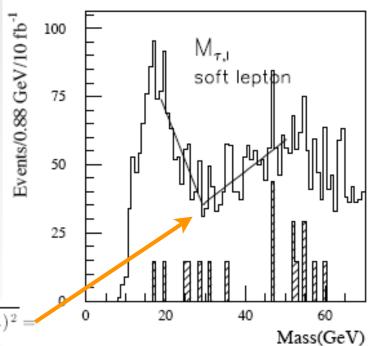
- mSUGRA's LSP is DM candidate
 - •model should be consistent with WMAP data $\,\,\widetilde{\chi}_{\,1}^{\,0}$
- - •m_{1/2}-m₀ parameter space scanned

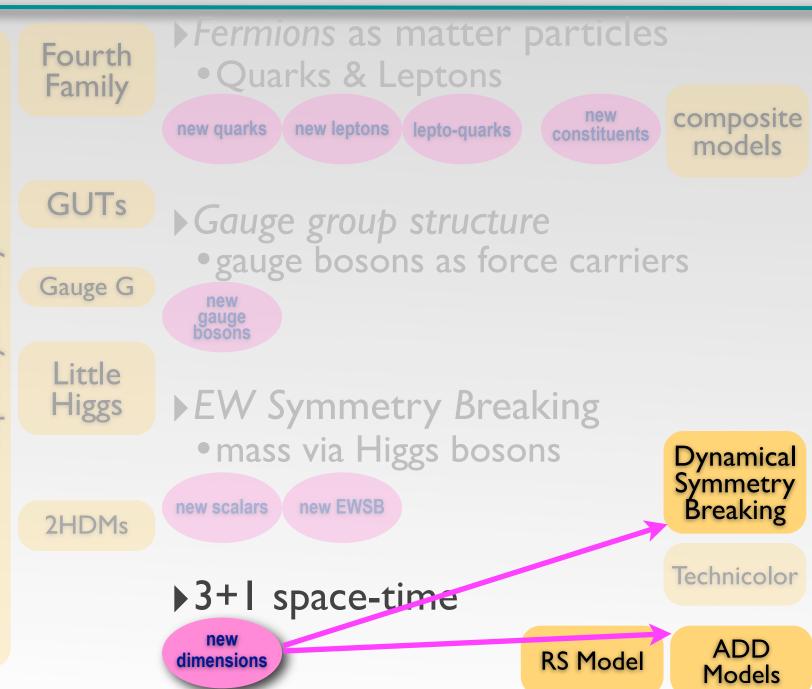


SN-ATLAS-2001-004

- Susy breaking scale close to weak scale
 - •LSP is gravitino, FCNC is suppressed
- Reference points with different model parameters & NLSP
 - *Fast MC based study @ G3 (NSLP is stau)
 - •G3b: NLSP is quasi-stable

•G3b: NLSP is quasi-stable •G3a: NLSP immediately decays $\tilde{q} \to \tilde{\chi}^0_{1,2} q \to \tilde{\ell}\ell q \to \tilde{\tau}(\tau)\ell\ell q \to \tilde{G}\tau(\tau)\ell\ell q$ leptons +jets + $\mathbf{E_T}^{\text{miss}}$





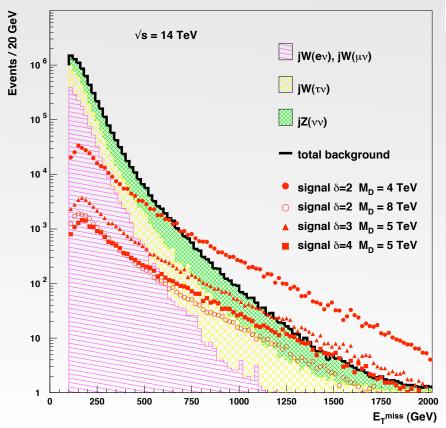
Excellent signal with few fb-1 in both cases

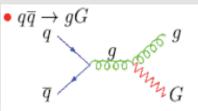
> G3a: stau decays before detection but dips can be calculated & fit:

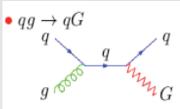
$$M_{\tau l}^{max} = \sqrt{M_{\tilde{l}_B}^2 - (M_{\tilde{\tau}_1} + M_{\tau})^2}$$

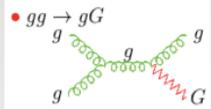
SN-ATLAS-2001-005

predicted by: all ED models


produced as: from q-q annihilation, q-g/g-g fusion


[©]decay via: - (stable)


 $gg/gq/q\bar{q} \to gG$

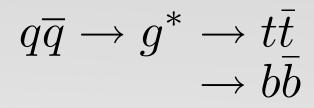


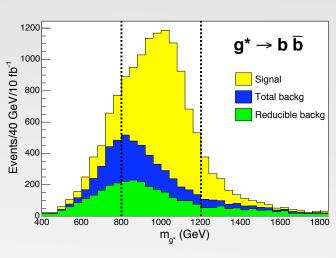
*#EDs=2,3,4 & ED scale scanned

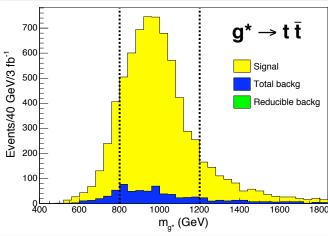
M _{Pl(4+d)} MAX(TeV)	δ=2	δ=3	δ=4
30fb ⁻¹	7.7	6.2	5.2
100fb ⁻¹	9.1	7.0	6.0

$$q\bar{q} \to \gamma G$$

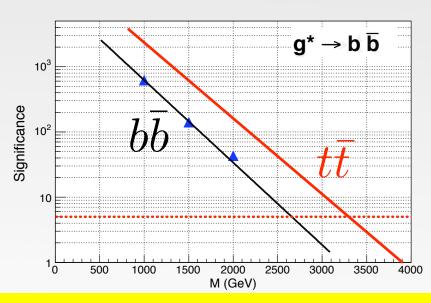
- *lower rate,
- *lower sensitivity due to ZY background


EDS Excited gluons

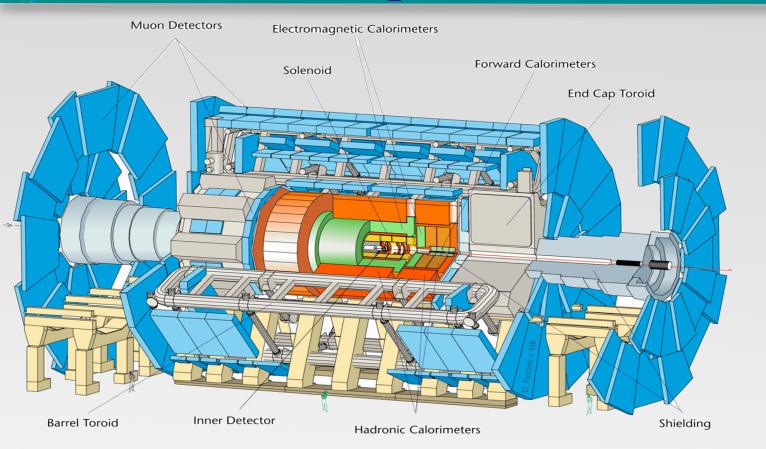

SN-ATLAS-2006-002/


predicted by: TEV-1 EDs (ADD)

produced as: from q-q annihilation


[©]decay via: heavy quark pairs

- *Fast MC based study
- g* mass scanned [1..3] TeV


300 fb⁻¹ allows reaching 3.3 TeV with 5σ

Summary

- *ATLAS has very rich discovery potential for BSM physics.
 - •scientific or pub note results shown, (mostly published)
- ©Concentrated on a selection* of discovery possibilities;
 - •some models (e.g. micro BHs) not mentioned,
 - differentiation between models not shown,
 - •boost to standard searches from BSM physics not shown.
- Some results with Fast MC were shown,
 - •New analyses with full simulation ongoing for first 1fb-1,
 - Trigger aware studies immediately applicable to LHC data
- Next few years will be very exciting, stay tuned...

12.000,26.00.37

auxiliary slides

	ATLAS
weight	7 000 t
diameter	25 m
length	46 m
B Field	2 T

year	energy	luminosity	aimed $\int L$ (fb ⁻¹)	physics beam time
2008	7+7 TeV	0.5x10 ³³	1-2	protons - from July on ➡ 4*10 ⁶ seconds
	7 7 10 0	0.0010	1 2	ions - after proton run - 5 days at 50% efficiency
2009	7+7 TeV	1x10 ³³	3 10	protons:50% better than 2008 ➡ 6*10 ⁶ seconds
		17(10		ions: 20 days at 50% efficiency ➡ 106 seconds
2010	7+7 TeV	1x10 ³⁴	100	TDR targets:
	, , 10 (17(10	.00	protons: ➡ 10 ⁷ seconds
				ions: 2*10 ⁶ seconds

BSM models: Exotics

▶ A brief summary of popular models:

- Grand Unified Theories:
 - SM gauge group is embedded into a larger one like SO(10), to unify EW and QCD.
 - additional fermions and bosons predicted.
- Little Higgs models:
 - spontaneously broken global symmetry to impose a cut-off ~10 TeV.
 - additional bosons and quarks introduced to cure the hierarchy problem.
- Extra Dimensions:
 - Low Planck scale in d dimensional theory solves the hierarchy problem between EW and Gravitational couplings.
 - Excitations of SM bosons and fermions are predicted.
- ▶ These models do **not** exclude supersymmetry.