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e Motivation

e The diagrams <« Perturbative integrals
@ Which kind of Feynman diagrams (F.D.) we consider

e Operator formalism
@ Algebraic reformulation of integrals for F.D.: manipulations with
integrals — manipulations with operators

e Application
@ Ladder diagrams for ¢3-theory in D = 4; relations to conformal
guantum mechanics
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1. Motivation

Physics |

@ In perturbative QFT physical data are extracted from multiple
integrals (perturbative integrals) associated to F.D.
@ The number of diagrams grows enormously in a higher order of

the perturbation theory —-
numerical calculations are not sufficient to obtain

desirable precision.
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@ Analytical evaluations of F.D. use the methods developed for
investigations of quantum integrable systems
(A.B. Zamolodchikov (1980); L.N. Lipatov; L.D. Faddeev and G.P. Korchemsky;
J. Minahan and K. Zarembo; N. Beisert and M. Staudacher; a.o.)

@ Analytical results for F.D. are expressed in terms of
multiple zeta values and polylogs = very interesting subject in
modern mathematics
(D. zagier; A.B. Goncharov; A. Connes and D. Kreimer).

@ Analytical results for F.D. give explicit expressions for
Green's functions of some specific integrable quantum mechanical
models and vice versa (this is one of the advantages of the
proposed algebraical method).
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2. The diagrams

The ED. (considered here) are graphs with vertices connected by lines
labeled by numbers (indeces). J

To each vertex of the graph we associate the point in D-dimensional
Euclidean space RP, while the lines (edges) of the graph (with index «)
are propagators of massless particles

X ———— Y = 1/(x-y)*

where | (x —y)?* = (32, (x — i) (X —¥i))*|, @ €C, x,y € RP. We
have 2 types of vertices: the boldface vertices e denote the integration
over RP. These F.D. are called F.D. in the configuration space.
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2. The diagrams
Examples (F.D. in configuration space):

a. 3-point function (graph with 5 vertices and 5 edges):.
= 4 _ f dPzdPu
o as (ny)zal 22a2 y2a3 u2a4 (uiy)ZaS

f dPx
o N3 (x—x%1)%%1 (X—X7)?%2 (x—X3)?*3

(o} Propagator-type diagram'
ag W g

a7 dPz dPudPy dPw
0 y X 2)20‘1 z20 (Z—U)2a3 ules (u—y)2a5 y2a6_”(w_x)2a9

Analytlcal calc. of ED. — reconstruction of graphs to-reduce no. of e.
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3. Operator formalism

Consider D-dimensional Euclidean space RP with coordinates x;,
(i=1,2,...,D). We use notation: |x2* = (X2, x?)*|. Let §; = § and

pi = f)iT be operators of coordinate and momentum

[k, Bj] =10k |-
Introduce states |x) = [{x;}), k) = |[{ki}): Gi|x) = x; [X), pilk) = k;i k),
and normalize these states as:
1 D _a_ D
(x|k) = (2n)o72 exp(i k; x;) /d K k) (k| = _/d X |X) (

"Matrix representation” of p~2° (propagator of massless particle) is:

1 1 (s
(X’@M =a(p) X —y)2 (a(ﬁ) = 7rD/222/3F(ﬂ)> :

where | 3’ = D/2 — 8 |and I'(3) is the Euler gamma-function.

For g2 the "matrix representation” is:  (x|G%®|y) = x?*s°(x —y).
0 7124




3. Operator formalism

Algebraic relations (a,b,c) which are helpful for analytical calculations J

of perturbative integrals for multi-loop F.D. = reconstruction of graphs

a. Group relation. Consider a convolution product of two propagators:

dPz G, p) _ a(a+p)
| ey = (x _y)2ers0/2) (G(“’ﬂ’ = a(a) a(ﬁ)) ’

which leads to the reconstruction of graph:

x—C e By o) xRy

This is the "matrix representation” of the operator relation

FA)_ZO/ 6—2,6’ — ﬁ—z(a’+ﬁ’). ' I I

J dPz (x[p~2" |z) (2] b2 ly) = (x|p~2>"Fy)
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3. Operator formalism
b. Star-triangle relation The "Method Of Uniqueness” (D.Kazakov, 1983)
(Yang-Baxter equation)

dP B G(a, B)
/ (x — Z)Za’ 72(a+p) (z — y)Zﬁ’ - (X)w (x — y)Z(%fafﬁ) (y)Za

Reconstruction of graph:

+
/
. (v, B) «
a+ﬁ

Operator version:
‘ p2oq-2AatP)p-26 — §-26p—2atp)g—2 l I '

N|O

Compare with Yang-Baxter equation:

S(a)S(a+ B8)S(B) = S(B) S(a + ) S(a)
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3. Operator formalism

Remarks on star-triangle relation:
1. STR is a commutativity condition for the set of operators
Ha — f)ZadZa:

ﬁquZ'y ﬁZana — F’jZana F’ijqZ'y =
p201—2)§27 p2e = G2« p*1§20-*) = STRfory = a + 3.
2. Algebraic proof of the STR. Introduce inversion operator R:




3. Operator formalism

3. One can deduce "local” STR which is related to the
a-representation for FD (R.Kashaev, 1996)

W (x?|a) = exp (—i)

W (G2|a1) W (D?] 55 ) W (6%|as) = W (p?| 5;) W (G%]52) W (P?| 7;)

where q; = 2224004205 s a star-triangle transformation for
resistances in electric networks
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3. Operator formalism

c. Integration by parts rule. (F Tkachov, K. Chetyrkin, 1981)

(reconstruction of graphs)

0 0
ag - 1 az—1 1 ag
a1 ag ~ (D—20p—0y—a3) {041( ap+1 az B a3 ) +
% y % y ag+1
0 0
ap—1 a 1
+az ( - )}
ag az+1 o
az+
X y X y
It can be represented in the operator form:
52 a2(a+1) 2(5+1))
2 — o B) HRG2H2 — [G°, p ] . 22y A28 a2an 2’y[q p
(2y—a—pB)p=*q°7p “dagn 4P pqi(ﬁﬂ) )

where a = —o, v = —az and § = —aj.
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3. Operator formalism

The integration by parts identity

[62, p*+Y)]

2, [62, P2+
4(a+1)

40B+1) 7

can be proved by using relations for Heisenberg algebra

(27-a-5)p*6>1p% = 6127 pq

(67, B2 ] = 4 (a+ 1) (H + ) p* |
HG% = 6% (H +20), HP? = p> (H - 20),

A A

where |H = 3(fiGi + Gipi

~—

is the dilatation operator.

The set of operators {G2, p?,H} generates the algebra sl(2).
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3. Operator formalism

An example of the operator representation for F.D.

Consider an operator:

A_20) A_ A_20) A_ ~_20/] ~_ A_2q/
w(ai):p 2a1q 2a2p 2a3q 20c4p Zas.“q 2a2kp 20‘2k+1'

This operator is the algebraic version of 3-point function:

Q2k

(X|W(ai)ly) ~

X ag Zl ag 22 as * QoK1 Zk Q41 y

Indeed,
(XU (an)ly) = (X|B2% G202 po2% §20s praok. §-20e p-hcaly)
a2, 1z,)(z,| [dZ,lz,)(z,|  [d’z|z,)(z]
Remark. (x|W(«;)|Xx) represents the propagator-type diagrams.
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3. Operator formalism

The advantage: we change the manipulations with integrals by the
manipulations with elements of the algebra generated by p2*,G%5. J

Is it possible to define the trace for this algebra?

A—20) 205 A—20h A —2ag, A —20% de
Tr(w(ai>):/d°x<xrp fgep g p ”“|x>=c(ai)/

X2
(8 =>_; ai; c(«y)- coeff. function). The dim. reg. procedure requires:

d”x
/)(Z(WMZO VOK#O

The extension of the definition of this integral is (s.Gorishnii, A.Isaev, 1985)

D
[ oty = 79,50al), M

where Q_ = 27"*/[(D/2), a = |aje’™™ . Then, the cyclic property of

"Tr” can be checked. "Tr": propagators = vacuum diagrams.
0
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4. Application

L-loop ladder diagrams for ¢° FT < D-dimensional conformal QM J

Consider dimensionally and analytically regularized massless integrals

d’p . 1
DL(p07pL+l7p a’ﬂ 7 [H/ 2ak : zﬂk] 1_‘[
k

o Py = Py )20

which correspond to the diagrams (X1 = po, X2 = Pr+1, X3 = P):
0

Po-p  P1-P PP PP

Pig  Pop | eeeeeees Pli—1 |Piac

Po P, PL PLis

(P = Pm — Px)
The diagrams (in config. and moment. spaces) are dual to each other
(the boldface vertices correspond to the loops). The operator version is

D (a; &, ,7) ~ (xalp™2% (TTy G7274(G — %) 2P 2% ) xz)
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4. Application

For simplicity we put| oj = «, i = 3,7 = v |and consider the

generating function for D :
~ 1

/ g .
TG - x3)25> |x2)

where g = g/a(v’) is the renormalized coupling constant. For the case
a + 3 = 24|, using inversions, etc. we obtain

g -1
ADn ! X
Do~ ul (B2 - 85 ) 1w,

where gx = §(xa) %%, uj = (1% — 5::;'2, v = P2 — L

The ¢°-theory for D = 4 is related to v/ = 1 = /3 and we obtain the
Green’s function for conformal QM:

~1
Dy~ (ul (2-%) Iv).
For D # 4 this GF = ladder diagramsfora = =1, v = % -1.

0 17 /24
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4. Application

Our method is based on the identity:

;_ 79 L A2 (H_l) 1 ~_2a
ﬁ2—g/ﬁ2_§( 4) [q (H—1+oz)'-+1[52q ol

[...]),_o Taking into account

(67

H-1) _ (=1- /OO L Ata t(H-1)
H-1ta) L J dtt-e at(e )

where we denote [...],. = & (95
(—

and etH+2) [x) = |e~'x) the Green’s function Dy is written in the form

1 1 /ge\b
MmW):ZG(Z) ®(u,v),

L=0

¢L(u,v)=—a(1)/O°°dttLK3§>“etaLLat((u_eeitv)z> 2.1
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4. Application

For D = 4 — 2¢ one can expand ¢ (u,Vv) over small e:

r1—e >, K (k)
d)L(U,V) - 4r2—cy2(l—e) kz Kl d)L (217 22) :
=0

where z; + z, = 2(uv)/u? and z;z, = v?/u?. The coeff. functions <I>(|_k)
are expressed in terms of multiple polylogarithms. The first one is
(N.I. Ussyukina and A.l. Davydychev; D.J. Broadhurst; 1993)

L

_\f _
d)(LO)(Zl?ZZ) = z; i ZZ]Z( f)! (E_ZE f)r)! Inf (2122) [LiZL—f(Zl) - LiZL—f(ZZ)] :

where polylogs are

o0

Limw) =3 wh

nm
n=1
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4. Application

The next coefficient is: <b(1)(zl, 23) =

2L ntin" (2122) [(nLi,4(22) = Li, 1 (22, 2) = L, (22, 2)) = (21 < 22)]
" (2L —n)!(n—L)! (z1 —z2) ’

=L (-
where multiple polylogarithms are
w 0w coewir
[ 0 r
Limg,my,...m (Wo, W1,... W) = Z —mr
ne°nyt...ng

No>ny>--->n >0

The function d)(Ll)(zl, z,) gives the first term in the expansion over e of
the L-loop ladder diagram (with special indices on the lines)
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5. Application to Lipatov’s model

Lipatov's model is described by the Hamiltonian H = >~ | Hji, 1, where

Hik = Bi In(pic)B;* + P In(pix )P+ + IN(PiPr) — 2¢(1) = 1)
=2 In(pi) + pix IN(BiPx) pyt — 2(1) . 2)
Here (1) - constant, pix = gi — Jk, q; - coordinates, p; = —i(_%i -
momenta.

Expression (2) appears in the expansion over ¢ of the operator
Rik(€) == pic (BiP) oy ¢ = 1+ (2 In(pik) + pik In(Pi If)k)ﬂiil) +e L

One-dimensional analog of the operator "star-triangle” identity:

+ + + +
P.kp:l ﬁp.k_p.ﬁpﬁi ﬂp| Al pk|p|a ﬂpk|_p|ﬁptljl ﬁpl )

Then, we have

1+enn

pﬁ(-i-e (ﬁiﬁk)E p& = Pik Py plk plk pk plk = p| plk p|l+€p S

Pik ﬁk:

—1+e (pr In(o) B + B Inoic) B + ln(pipk)) +e

and this proves the equivalence of the expressions (1) and (2).
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5. Application to Lipatov’s model

The operator Ry (€) := py(PiPx ) py - T satisfies the Yang-Baxter
equation

Riit1(€) Riziito(e + €)Riiza(€) = Riz1iz2(€) Riipa(e + €) Rizriza(e) -

Then the complete holomorphic Hamiltonian H = Zi”:l Hii,1 appears
in the expansion over e of the monodromy matrix

T12..n+1)(€) = R12(€) R23(€) Raale) - - Ranya(e) -

Recent results of (s.E. Derkachov and A.N.Manashov, "R-Matrix and Baxter Q-Operators
for the Noncompact SL(N, C) Invariant Spin Chain”, nlin.S1/0612003, 2006) generalize the
constructions presented above.
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@ Applications of the coefficients ¢ (u,Vv) for the avaluations of
4-point functions in N = 4 SYM theory.

@ Lipatov’s integrable model — describes high energy scattering of
hadrons in QCD.

@ Generalizations to massive case and to supersymmetric case. In
massive case it is tempting to calculate the Green’s function

1
(67— 9/& +m?

<U| ) |V>:ZgL¢L(u7V;m2)v
L=0

@ It seems that the approach is not universal even for massless
FDs. We should add something new.
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For Further Reading |

@ A.P lIsaev,
Nucl. Phys. B662 (2003) 461 (hep-th/0303056)
Multi-Loop Feynman Integrals and Conformal Quantum Mechanics
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