13th Lomonosov Conference on Elementary Particle Physics

Bound state problems and radiative effects in extended electrodynamics with Lorentz violation

O.G.Kharlanov, I.E.Frolov, V.Ch.Zhukovsky

Department of Theoretical Physics, Physical Faculty, Moscow State University, Russia

Moscow State University, 27th August, 2007

1 / 47

Kharlanov, Frolov, Zhukovsky (MSU)

Bound State and SR in SME

August 27, 2007

Hydrogen-like bound state

- Quasirelativistic approach
- Expansion of the Dirac equation with respect to b^0
- Radiative transitions

Synchrotron radiation

- The Model
- Eigenstate problem
- Radiative transitions
- Discussion

Kharlanov, Frolov, Zhukovsky (MSU)

4 Conclusion

The Background [1]

- There exist some theories (but not the Standard Model itself!) that suggest a self-consistent description of quantum gravity. However, they are too complicated and contain many undetermined parameters
- In string and some other theories, a spontaneous breaking of Lorentz and CPT invariance can occur at 'low' energies $E \ll M_P \sim 10^{19} \text{GeV}$ [Kostelecký, Jackiw, Coleman, Glashow, Colladay, et al.]
- For the study of Lorentz violation in these conditions, The Standard Model Extension (SME) was elaborated [Kostelecký, Colladay, et al.] that describes it in the most general way
- No evidence for the existence of Lorentz violation has been found to date; all SME-couplings are tightly constrained, except for the few ones, e.g. the zero component of the axial vector b_{μ} :

$$\begin{array}{rrl} |b_0| &\lesssim & 10^{-2} \mathrm{eV}, \\ |b| &\lesssim & 10^{-19} \mathrm{eV}. \end{array}$$

The Background [2]

- The study of atom within SME has yet concerned, primarily, its spectroscopic properties [Kostelecký, Bluhm, Russell, Lane, Ferreira et al.]. Solving the atomic eigenstate problem would also give the possibility to study its radiative properties
- Atomic parity can be effectively violated due to the weak interaction [Zeldovich, Khriplovich, Novikov, Bouchiat, Curtis-Michel] and directly by the interaction with the Lorentz-violating condensate b_0 .
- Quantum theory of synchrotron radiation (SR) has been developed within the Standard Model [Sokolov, Ternov, Bagrov, Zhukovsky et al.] that even took the electron AMM into account.
- This theory was based on the method of exact solutions in the external magnetic field
- Although this method has been employed in SME [Lobanov, Zhukovsky, Murchikova], SR has been treated only classically [Altschul]

Kharlanov, Frolov, Zhukovsky (MSU)

Bound State and SR in SME

The Essence

Working within the context of Lorentz-violating extended electrodynamics (a part of the Standard Model Extension (SME)), we investigate the following physical systems:

- electron bound state in the Coulomb potential (hydrogen-like atom),
- electron in a constant homogeneous magnetic field and synchrotron radiation (SR).

Consideration of these problems is quite similar. It includes studying the following aspects:

- integrals of motion in the external field,
- one-particle eigenstates and spectrum in the external field,
- quantum transitions: interaction with photons within the Furry picture, radiation distribution.

Extended electrodynamics

We use the minimal CPT-odd form of the extended electrodynamics with electrons and photons:

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \bar{\psi} \left(i \gamma^{\mu} D_{\mu} - m_e - \mathbf{b}_{\mu} \gamma_5 \gamma^{\mu} \right) \psi.$$

 $\text{Electron charge } q_e = -e < 0, \ \alpha = e^2/4\pi; \ \ D_\mu = \partial_\mu - ieA_\mu, \ \ \gamma_5 = -i\gamma^0\gamma^1\gamma^2\gamma^3.$

 b^{μ} is a constant axial vector condensate that introduces a Lorentz-violating CPT-odd interaction

2 Hydrogen-like bound state

- Quasirelativistic approach
- ullet Expansion of the Dirac equation with respect to b^0
- Radiative transitions

Synchrotron radiation

- The Model
- Eigenstate problem
- Radiative transitions
- Discussion

4 Conclusion

The Model

• One-particle approximation for e^- in an external field $A_{\mu}(\boldsymbol{r},t)$ within extended electrodynamics:

$$i\hbar \frac{\partial \psi}{\partial t} = \hat{H}_{\rm D}(t)\psi, \, \|\psi\|^2 = 1;$$
$$\hat{H}_{\rm D}(t) = c\boldsymbol{\alpha} \cdot \hat{\boldsymbol{P}} + \gamma^0 m_e c^2 - eA_0 - b_0\gamma_5 - \boldsymbol{b} \cdot \boldsymbol{\Sigma},$$
$$\alpha_i = \gamma^0 \gamma^i, \, \Sigma_i = -\alpha_i \gamma_5, \, \hat{\boldsymbol{P}} = \hat{\boldsymbol{p}} + \frac{e}{c} \boldsymbol{A}.$$

- Expansion into a series with respect to b^{μ} .
- Of interest is a spherically-symmetric potential, e.g. the Coulomb potential: $A^{\mu} = \left\{ \frac{Ze}{4\pi r}, \mathbf{0} \right\}$. In such a field, P-parity is unbroken unless $b^0 \neq 0$.
- We will show both the quasirelativistic (for $Z\alpha \ll 1$) and relativistic (for $Z\alpha < 1$) approaches.

2 Hydrogen-like bound state

- Quasirelativistic approach
- ullet Expansion of the Dirac equation with respect to b^0
- Radiative transitions

Synchrotron radiation

- The Model
- Eigenstate problem
- Radiative transitions
- Discussion

4 Conclusion

Quasirelativistic Hamiltonian in the External Field [1]

To obtain it, we will use the expansion into a series with respect to 1/c, assuming $\hbar, c \neq 1$, $b^{\mu} = \{cb_t, b\}$ (the Landau method).

0. Consider an electron with a wavefunction ψ in the positive energy continuum:

$$i\hbar \partial \psi / \partial t = \hat{H}_{\mathrm{D}}(t)\psi, \quad \|\psi\|^2 = 1.$$

Assume $\hat{\boldsymbol{P}}, \boldsymbol{E}, \boldsymbol{H} = O(c^0)$, when acting upon ψ , and $b_t, \boldsymbol{b} = O(c^0)$.

1.Perform an energy shift: $\psi(\mathbf{r}, t) = \exp\left\{-i\frac{m_ec^2}{\hbar}t\right\} \begin{pmatrix} u\\v \end{pmatrix}$ 2. In the standard representation of the Dirac matrices, $\begin{pmatrix} \hat{\lambda} & -c\hat{\Lambda}\\ -c\hat{\Lambda} & \hat{\lambda} + 2m_ec^2 \end{pmatrix} \begin{pmatrix} u\\v \end{pmatrix} = 0, \quad \hat{\Lambda} \equiv \sigma \mathbf{P} + b_t, \ \hat{\lambda} \equiv eA_0 + \boldsymbol{\sigma} \cdot \boldsymbol{b} + i\hbar\frac{\partial}{\partial t}.$

Then $v = \frac{1}{2m_ec} \left(1 - \frac{\hat{\lambda}}{2m_ec^2}\right) \hat{\Lambda} u + O(1/c^4).$

3. Quasirelativistic wavefunction: $\Phi(x) \equiv \left(1 + \frac{\hat{\Lambda}^2}{8m_{\pi}^2c^2}\right) u$.

Quasirelativistic Hamiltonian in the External Field [2]

4. The equations of motion in the $1/c^2$ approximation (general form):

$$\left\{\hat{\lambda} - \frac{\hat{\Lambda}^2}{2m_e} \left(1 - \frac{\hat{\Lambda}^2}{4m_e^2 c^2}\right) + \frac{1}{8m_e^2 c^2} \left[\left[\hat{\lambda}, \hat{\Lambda}\right], \hat{\Lambda} \right] \right\} \Phi = O(1/c^3).$$

5. The quasirelativistic Hamiltonian (gives unitary evolution and U(1) gauge invariance):

$$\hat{h} = \frac{\hat{P}_{b}'^{2}}{2m_{e}} \left(1 - \frac{\hat{P}_{b}'^{2}}{4m_{e}^{2}c^{2}} \right) + \frac{e\hbar}{2m_{e}c} \sigma H - \sigma b - eA_{0} + + \frac{e\hbar}{4m_{e}^{2}c^{2}} \sigma [EP] + \frac{e\hbar^{2}}{8m_{e}^{2}c^{2}} \operatorname{div} E + \frac{\sigma [P[bP]]}{2m_{e}^{2}c^{2}}; \hat{P}_{b}'^{2} \equiv \hat{P}_{b}^{2} - 2b_{t}^{2}, \quad \hat{P}_{b} = \hat{P} + b_{t}\sigma.$$

6. The results agree with [Kostelecký, Lane, 1999] and [Ferreira Jr., Moucherek, 2006].

Kharlanov, Frolov, Zhukovsky (MSU)

The $1/c^2$ -approximation in the Coulomb field

 $eA_0 = \frac{Z\alpha\hbar c}{r}$, A = 0, linear order in $b^{\mu} = \{cb_t, 0\}$ Unitary transformation $\Phi = \exp\left\{\frac{ib_t}{\hbar}\left(1 + \frac{Zr_e}{2r}\right)\boldsymbol{\sigma}\cdot\boldsymbol{r}\right\}\tilde{\Phi}$, $r_e = \frac{\alpha\hbar}{m_ec}$, reduces the problem to that without Lorentz-violating terms. After the inverse transformation, we obtain:

$$\begin{split} \Phi_{nljm_j}(\boldsymbol{r}) &= R_{nlj}(r) \left\{ Y_{jm_j}^l(\boldsymbol{r}/r) + \frac{\varkappa b_t r}{\hbar} \left(1 + \frac{Zr_e}{2r} \right) Y_{jm_j}^{l'}(\boldsymbol{r}/r) \right\}, \\ E &= E_{nj}|_{b^0=0} = -\frac{Z\hbar R}{n^2} \left[1 + \frac{Z^2\alpha^2}{n} \left(\frac{1}{j+1/2} - \frac{3}{4n} \right) \right], \\ \left(\hat{\boldsymbol{l}}^2 + \frac{b_t}{\hbar} \left(1 + \frac{Zr_e}{2r} \right) \boldsymbol{\sigma}([\hat{\boldsymbol{r}}\hat{\boldsymbol{l}}] - [\hat{\boldsymbol{l}}\hat{\boldsymbol{r}}]) \right) \Phi_{nljm_j} = l(l+1)\Phi_{nljm_j}; \\ R &= \alpha^2 m_e c^2/2, \quad l' \equiv 2j-l, \quad \varkappa \equiv (-1)^{\frac{l-l'+1}{2}} = \mp 1 \text{ for } l = j \pm 1/2. \end{split}$$

 $R_{nlj}(r)$ remain the same radial functions that recover in the $b_0 = 0$ case. We will consider this problem in more detail within the relativistic approach Kharlanov, Frolov, Zhukovsky (MSU) Bound State and SR in SME August 27, 2007 12 / 47

2 Hydrogen-like bound state

- Quasirelativistic approach
- ullet Expansion of the Dirac equation with respect to b^0
- Radiative transitions

Synchrotron radiation

- The Model
- Eigenstate problem
- Radiative transitions
- Discussion

4 Conclusion

Gauge-invariant unitary transformation [1]

 $\hbar = c = 1$, $\alpha = e^2/4\pi$, quadratic approximation in $b^{\mu} = \{b_0, \mathbf{0}\}$. Consider an electron in a spherically-symmetric potential $\phi(r)$, and in a weak 'external' field $A^{(e)}_{\mu}(x)$, so that $A^{\mu}(x) = \{\phi(r) + A^{(e)}_0(x), \mathbf{A}^{(e)}(x)\}$. The transformation:

$$\psi = e^{-ib_0\hat{\Delta}}\tilde{\psi}, \quad \hat{\hat{H}}_{\mathrm{D}} - i\frac{\partial}{\partial t} = e^{ib_0\hat{\Delta}}\cdot\left(\hat{H}_{\mathrm{D}} - i\frac{\partial}{\partial t}\right)\cdot e^{-ib_0\hat{\Delta}}$$

 $\hat{\Delta} = \Sigma \boldsymbol{r} - \frac{i}{m_e}(\Sigma \hat{\boldsymbol{L}} + 1)\gamma^0\gamma_5, \qquad \hat{\boldsymbol{L}} = [\boldsymbol{r}\hat{\boldsymbol{P}}] = -[\hat{\boldsymbol{P}}\boldsymbol{r}].$

The transformed Hamiltonian

$$\hat{\tilde{H}}_{\rm D} \approx \hat{H}_{\rm D} \mid_{b_0=0} -\frac{b_0^2}{m_e} \hat{f} \gamma^0 - \hat{\boldsymbol{d}}_A \boldsymbol{E}^{\rm (e)} - \hat{\boldsymbol{\mu}}_A \boldsymbol{H}^{\rm (e)} + \hat{H}_{\rm int}^{(2)} [A^{\rm (e)}],$$

where $\hat{H}_{int}^{(2)}[A^{(e)}]$ contains b_0^2 -corrections to the interaction with the external field, and $\hat{f} \equiv \Sigma \hat{l} + 1$.

Gauge-invariant unitary transformation [2]

Corrections to the magnetic and electric dipole moment operators:

$$\hat{oldsymbol{\mu}}_A = rac{eb_0}{m_e} \gamma^0 [oldsymbol{\Sigma} oldsymbol{r}], \qquad \hat{oldsymbol{d}}_A = i \gamma_5 \hat{oldsymbol{\mu}}_A.$$

These two operators have zero expectation values in any eigenstate of the nonperturbed Hamiltonian. Moreover, since $[\hat{\Delta}, \phi(r)] = 0$, $\hat{\tilde{H}}_{\rm D}$ does not include additional terms containing $\phi(r)$, and that holds exactly, i.e. in every order in b_0 .

The correction $\hat{\mu}_A$ generates a nonzero anapole magnetic moment T of the electron orbital, which interacts as $-T \cdot \operatorname{rot} H^{(e)}$ with the external magnetic field. In the ground state of hydrogen (Z = 1),

$$m{T}=2er_{
m B}^2\left(rac{b_0}{m_ec^2}
ight)m_sm{e}_z, \quad r_{
m B}$$
 is the Bohr radius; $m_s=\pm 1/2.$

Anapole moment is specific for systems with broken parity [Zeldovich,1957] Borisov, Zhukovsky, Ternov, 1989].

Kharlanov, Frolov, Zhukovsky (MSU)

Removing b_0 in a spherically-symmetric potential [1]

 $A^{(e)} = 0 \Rightarrow \hat{\Delta} = \Sigma \cdot r - \frac{i}{m_e} \hat{f} \gamma^0 \gamma_5; \quad \phi(r) \text{ is arbitrary!}$ Transformed Hamiltonian: $\hat{H}_D \approx \alpha \hat{p} + m_e \gamma^0 - e\phi(r) - \frac{b_0^2}{m_e} \hat{f} \gamma^0.$ This Hamiltonian is P-even, then $\tilde{\psi}$ can be taken as follows:

$$\tilde{\psi}_{nljm_j}(\boldsymbol{r},t) = \begin{pmatrix} R_{nlj}^{(1)}(r)Y_{jm_j}^l(\boldsymbol{r}/r) \\ \varkappa R_{nlj}^{(2)}(r)Y_{jm_j}^{l'}(\boldsymbol{r}/r) \end{pmatrix},$$

 $j=rac{1}{2},rac{3}{2},\ldots, \ \ m_j=\overline{-j,j}; \ \ \ l=j\pm 1/2$ determines the parity $P\equiv (-1)^l.$

Moreover, $\hat{f}\gamma^0\tilde{\psi} = f\tilde{\psi}$, $f \equiv \varkappa(j+1/2) = \mp 1$ for $l = j \pm 1/2$. $\tilde{H}_{\rm D}$ therefore formally describes an electron in the potential $\phi(r)$ without Lorentz violation, but with a splitting correction $(-b_0^2 f/m_e)$ to the energy:

$$E = \tilde{E} = E_{nlj}^{(0)} \pm (j + 1/2) \frac{b_0^2}{m_e}$$
 for $l = j \pm 1/2$,

where $\{E_{nlj}^{(0)}\}$ is the spectrum in the $b_0=0$ case.

Removing b_0 in a spherically-symmetric potential [2]

In the initial representation: modified parity: $\hat{P}_b = e^{-2ib_0\hat{\Delta}}\hat{P}$,

eigenfunction:
$$\psi_{nljm_j}(\mathbf{r},t) = e^{-iE_{nlj}t} \exp\left\{-\frac{b_0^2}{2}\left(r^2 + \frac{(j+1/2)^2}{m_e^2}\right)\right\} \times \\ \times \left(\begin{matrix} R_{nlj}^{(1)}Y_{jm_j}^l - b_0 \varkappa \left(\frac{f}{m_e}R_{nlj}^{(2)}(r) - rR_{nlj}^{(1)}(r)\right)Y_{jm_j}^{l'} \\ \varkappa R_{nlj}^{(2)}Y_{jm_j}^{l'} - b_0 \left(\frac{f}{m_e}R_{nlj}^{(1)}(r) + rR_{nlj}^{(2)}(r)\right)Y_{jm_j}^{l} \end{matrix} \right), \\ E_{nlj} = E_{nlj}^{(0)} \pm (j+1/2)\frac{b_0^2}{m_e} \qquad \text{for } l = j \pm 1/2.$$

In the Coulomb potential $(e\phi(r) = Z\alpha/r)$, the radial functions $R_{nlj}^{(1,2)}$ are well-known [Gordon; Darwin, 1928]. We don't demonstrate them for their complexity.

The degeneracy over l typical for this case is now removed, the splitting being $\lesssim 10^5$ Hz (if $b_0 \lesssim 10^{-2}$ eV). However, it increases linearly with j.

2 Hydrogen-like bound state

- Quasirelativistic approach
- ullet Expansion of the Dirac equation with respect to b^0
- Radiative transitions

Synchrotron radiation

- The Model
- Eigenstate problem
- Radiative transitions
- Discussion

4 Conclusion

Approximations

The angular distribution of the dipole one-photon radiation for the transition $|i\rangle_{b_0} \rightarrow |f\rangle_{b_0}$, in the nonrelativistic and linear in b_0 approximation:

$$\begin{split} \frac{dw_{fi}}{d\Omega_{\mathbf{k}}} &= \frac{k^3}{2\pi\hbar} \left| \boldsymbol{e}^{(\tau)^*} \cdot \langle f|_0 \,\hat{\mathbf{m}} \, |i\rangle_0 \right|^2; \qquad k = \frac{E - E'}{\hbar c}, \\ \hat{\mathbf{m}} &= e\hat{\boldsymbol{r}} - \frac{ie}{2} (\boldsymbol{k} \cdot \hat{\boldsymbol{r}})\hat{\boldsymbol{r}} - \left[\frac{\boldsymbol{k}}{k} \times \hat{\boldsymbol{\mu}} \right], \\ \hat{\boldsymbol{\mu}} &= \frac{e\hbar}{2m_ec} (\hat{\boldsymbol{l}} + \boldsymbol{\sigma}) + \hat{\boldsymbol{\mu}}_A, \quad \hat{\boldsymbol{\mu}}_A = \frac{eb_0}{m_ec^2} [\boldsymbol{\sigma}\hat{\boldsymbol{r}}]. \end{split}$$

k and $e^{(\tau)}$ define the photon momentum and polarization (τ), $|i\rangle_0$ and $|f\rangle_0$ are the corresponding eigenstates in the absence of b_0 ; E, E' are their energies.

The Lorentz violation only modifies the electron magnetic moment operator $\hat{\mu}$.

Kharlanov, Frolov, Zhukovsky (MSU)

Transition:
$$|2p_{1/2}, m_j = 1/2\rangle \rightarrow |1s_{1/2}, m'_j = -1/2\rangle$$

Distribution (summed over the photon polarizations):

$$\frac{dw}{d\Omega_{\boldsymbol{k}}} = \frac{256\alpha^3 R}{6561\pi} \left\{ 1 + \cos^2\theta - \frac{8b_0}{m_e c^2} \cos\theta \right\},\,$$

 $R = \frac{\alpha^2 m_e c^2}{2\hbar^3}$ is the Rydberg constant, θ is the angle between k and the axis of the angular moment quantization (z).

- The asymmetry appears due to the parity-nonconserving radiation processes involving $\hat{\mu}_A$ and the interference of the corresponding radiation with the electric dipole radiation.
- Within the linear order in b_0 , the total radiation rates are unaffected.
- The factor of asymmetry is of the order $\frac{b_0}{m_ec^2} \lesssim 10^{-8}$
- For unpolarized atoms, a spherically-symmetric distribution is restored.

An example of a transition [2]

Transition: $|2p_{1/2}, m_j = 1/2\rangle \rightarrow |1s_{1/2}, m'_j = -1/2\rangle$

$$\frac{dw}{d\Omega_{k}} = \frac{256\alpha^{3}R}{6561\pi} \left\{ 1 + \cos^{2}\theta - \frac{8b_{0}}{m_{e}c^{2}}\cos\theta \right\}.$$

To make the picture more vivid, we chose $b_0/m_ec^2 = 0.05$ ($b_0 > 0$). The distribution for $b_0 = 0$ is shown in dash.

Kharlanov, Frolov, Zhukovsky (MSU)

Bound State and SR in SME

August 27, 2007

A short summary

We have studied the b_0 -induced Lorentz violation both in its nonrelativistic and relativistic regimes. The eigenstate problem in a spherically symmetric potential was reduced to that without Lorentz violation.

The presence of b_0 causes the violation of atomic parity, which results in the additional energy splitting over l quantum number and in the existence of the b_0 -induced anapole moment of the orbital.

The radiation of polarized atoms, in turn, demonstrates a specific asymmetry.

- Quasirelativistic approach
- ٠

Synchrotron radiation 3

- The Model
- Eigenstate problem
- Radiative transitions
- Discussion •

2 Hydrogen-like bound state

- Quasirelativistic approach
- ullet Expansion of the Dirac equation with respect to b^0
- Radiative transitions

Synchrotron radiation

- The Model
- Eigenstate problem
- Radiative transitions
- Discussion

4 Conclusion

The Model

- Quantum treatment of electron motion within extended QED with b_{μ}
- $b^{\mu} = \{b_0, \mathbf{0}\}$ in the observer frame
- Classical constant homogeneous external magnetic field H, $H \ll H_c = \frac{m_e^2}{e} \approx 4.41 \cdot 10^{13}$ Gauss
- Anomalous magnetic moment (AMM) $\mu \approx \frac{\alpha}{2\pi} \frac{e}{2m_e}$ since $H \ll H_c$

$$\mathcal{L} = \bar{\psi} \left(i \gamma^{\mu} D_{\mu} - m_e + \frac{\mu}{2} \sigma^{\alpha\beta} F_{\alpha\beta} - \gamma_5 \gamma^{\mu} b_{\mu} \right) \psi,$$

$$\gamma_5 = -i \gamma^0 \gamma^1 \gamma^2 \gamma^3, \ \sigma^{\mu\nu} = \frac{i}{2} [\gamma^{\mu}, \gamma^{\nu}], \ D_{\mu} = \partial_{\mu} - i e A_{\mu}, \ e > 0 \ (q_e = -e).$$

2 Hydrogen-like bound state

- Quasirelativistic approach
- ullet Expansion of the Dirac equation with respect to b^0
- Radiative transitions

Synchrotron radiation

- The Model
- Eigenstate problem
- Radiative transitions
- Discussion

4 Conclusion

Eigenstate problem

Let $H = He_z$, H = const > 0, $A^{\mu}(x) = \{0, \frac{1}{2}[Hr]\}$ so that $A_z = 0$.

For an eigenstate $|\psi\rangle$, the wavefunction $\psi(x) = e^{-iEt}\Psi(\mathbf{r})$, and we come to the modified Dirac eigenstate problem:

$$\hat{H}_{\rm D}\Psi(\boldsymbol{r}) = E\Psi(\boldsymbol{r}),$$

where

$$\hat{H}_{\rm D} = \boldsymbol{\alpha} \hat{\boldsymbol{P}} + \gamma^0 m_e + \mu H \gamma^0 \Sigma_3 - b_0 \gamma_5.$$

 $[\hat{H}_{\mathrm{D}},\hat{p}_z]=0$, so let us resort to a subspace with definite p_z where

$$\Psi(\boldsymbol{r}) = \frac{e^{ip_z z}}{\sqrt{2\pi}} \phi(\rho, \varphi),$$

 $oldsymbol{r} \leftrightarrow \{
ho, arphi, z\}$ are the cylindrical coordinates.

Kharlanov, Frolov, Zhukovsky (MSU)

Transformation to effective quantities

Lorentz-violating γ_5 -term in the Hamiltonian can be effectively removed with the help of a unitary transformation:

$$\begin{split} \phi &= e^{-\frac{\vartheta}{2}\gamma^{3}}\tilde{\phi}, \qquad \hat{\tilde{H}}_{\mathrm{D}}\tilde{\phi} = E\tilde{\phi}; \qquad \qquad \vartheta = \arctan\frac{b_{0}}{\mu H}, \\ \hat{\tilde{H}}_{\mathrm{D}} &= \alpha\hat{\tilde{P}} + \gamma^{0}\tilde{m}_{e} + \tilde{\mu}H\gamma^{0}\Sigma_{3}, \qquad \hat{\tilde{P}} = \{\hat{P}_{1}, \hat{P}_{2}, \tilde{p}_{z}\}. \end{split}$$

This fact, however, does not indicate that the Lorentz violation is nonphysical. Instead, effective quantities arise in the effective Hamiltonian $\hat{\hat{H}}_{\mathrm{D}}$:

effective AMM $\tilde{\mu}$, such that effective mass and z-momentum

$$\begin{split} \tilde{\mu}H &= \sqrt{(\mu H)^2 + b_0^2}, \\ \begin{pmatrix} \tilde{m}_e \\ \tilde{p}_z \end{pmatrix} &= \begin{pmatrix} \cos\vartheta & \sin\vartheta \\ -\sin\vartheta & \cos\vartheta \end{pmatrix} \begin{pmatrix} m_e \\ p_z \end{pmatrix}. \end{split}$$

Except for the change $(m_e, p_z, \mu) \rightarrow (\tilde{m}_e, \tilde{p}_z, \tilde{\mu})$, the eigenstates $\tilde{\phi}$ are the same as those found in [Ternov, Bagrov, Zhukovsky, 1966],

Kharlanov, Frolov, Zhukovsky (MSU)

Bound State and SR in SME

August 27, 2007

Energy Spectrum and Integrals of Motion

Full set of quantum numbers and the corresponding integrals of motion (in the initial representation):

quantum number	int. of motion	eigenvalue
$\epsilon = \pm 1$	\hat{H}_D	$E = \epsilon \sqrt{(\Pi + \tilde{\mu}H)^2 + \tilde{p}_z^2}$
$\begin{aligned} \zeta &= \pm 1, \\ n &= 0, 1, 2, \dots \end{aligned}$	$\hat{\Pi} = \hat{\Pi}_{\perp} \cos \vartheta + \hat{\Pi}_{\parallel} \sin \vartheta$	$\Pi = \zeta \sqrt{\tilde{m}_e^2 + 2eHn}$
$p_z \in \mathbb{R}$	$\hat{p}_z = -i\frac{\partial}{\partial z}$	p_z
$s = 0, 1, 2, \dots$	$\hat{J}_z = -i\frac{\partial}{\partial\varphi} + \frac{\Sigma_3}{2}$	n - s - 1/2

Here, $\hat{\Pi}$ is the operator of electron polarization properties, which contains a transversal and a longitudinal parts:

$$\hat{\Pi}_{\perp} = m_e \Sigma_3 + i \gamma^0 \gamma^5 [\mathbf{\Sigma} \times \hat{\mathbf{P}}]_z, \qquad \hat{\Pi}_{\parallel} = \mathbf{\Sigma} \hat{\mathbf{P}}.$$

When $b_0 \neq 0$, the transversal polarization is no more conserved and the electron eigenstates possess a 'mixed' (partially longitudinal) polarization.

Kharlanov, Frolov, Zhukovsky (MSU)

Bound State and SR in SME

Eigenfunctions [1]

After the inverse unitary transformation is performed, the solutions for $\boldsymbol{\Psi}$ have the form:

$$\Psi(\rho,\varphi,z) = \frac{e^{ip_z z}}{\sqrt{2\pi}} \frac{e^{i(n-s-1/2)\varphi}}{\sqrt{2\pi}} \sqrt{eH} \begin{pmatrix} c_1 e^{-i\varphi/2} I_{n-1,s}(\chi) \\ ic_2 e^{i\varphi/2} I_{n,s}(\chi) \\ c_3 e^{-i\varphi/2} I_{n-1,s}(\chi) \\ ic_4 e^{i\varphi/2} I_{n,s}(\chi) \end{pmatrix}, \quad \chi \equiv \frac{eH}{2}\rho^2,$$

Laguerre functions :
$$I_{n,s}(\chi) = \sqrt{\frac{s!}{n!}} e^{-\chi/2} \chi^{(n-s)/2} L_s^{n-s}(\chi),$$

Laguerre polynomials :
$$L^l_s(\chi) ~=~ rac{1}{s!} e^\chi \chi^{-l} rac{d^s}{d\chi^s} \left(e^{-\chi} \chi^{s+l}
ight).$$

Eigenfunctions [2]

State-dependent spin coefficients $\{c_{\mathfrak{a}}\}$ for the normalized eigenfunctions:

$$\begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{pmatrix} = \frac{1}{2\sqrt{2}} \begin{pmatrix} A(P\alpha + \epsilon\zeta Q\beta) \\ -\zeta B(P\alpha - \epsilon\zeta Q\beta) \\ A(P\beta - \epsilon\zeta Q\alpha) \\ \zeta B(P\beta + \epsilon\zeta Q\alpha) \end{pmatrix},$$

$$\sqrt{1 + \frac{\tilde{m}_e}{\Pi}}, \quad B = \sqrt{1 - \frac{\tilde{m}_e}{\Pi}}, \quad P = \sqrt{1 + \frac{\tilde{p}_z}{F}}, \quad Q = \sqrt{1 - \frac{\tilde{p}_z}{H}}$$

$$A = \sqrt{1 + \frac{m_e}{\Pi}}, \quad B = \sqrt{1 - \frac{m_e}{\Pi}}, \quad P = \sqrt{1 + \frac{p_z}{E}}, \quad Q = \sqrt{1 - \frac{p_z}{E}},$$
$$\alpha = \cos\frac{\vartheta}{2} - \sin\frac{\vartheta}{2}, \quad \beta = \cos\frac{\vartheta}{2} + \sin\frac{\vartheta}{2}.$$

Kharlanov, Frolov, Zhukovsky (MSU) Bound St

2 Hydrogen-like bound state

- Quasirelativistic approach
- ullet Expansion of the Dirac equation with respect to b^0
- Radiative transitions

Synchrotron radiation

- The Model
- Eigenstate problem
- Radiative transitions
- Discussion

General theory

Total radiation power in the leading order in e^2 for the spontaneous transition from an eigenstate $|i\rangle$ to $|f\rangle$ with energies E and E', respectively:

$$W = \frac{e^2}{2\pi} \sum_{\tau=\sigma,\pi} \int d^3k \,\,\delta(E' - E - k) \left| \boldsymbol{e}^{(\tau)^*} \cdot \left\langle f \right| \,\boldsymbol{\alpha} e^{-i\boldsymbol{k}\boldsymbol{r}} \left| i \right\rangle \right|^2,$$

 ${f k}$ is the photon wave vector, $e^{(au)}$ is the vector describing the photon polarization (au).

The ultimate goal is to obtain the spectral-angular radiation distribution (per unit length along z) summarized over all final states $|f\rangle$ with energies E' < E (i.e. over all allowed transitions from the fixed initial state).

Used approximations

- ultrarelativistic electron: $m_e/E \equiv \lambda \ll 1$
- 'weak' magnetic field: $H \ll H_c$ (taken together, these two assumptions imply that $n \gg 1$, that corresponds to a quasi-classical electron motion)
- small electron AMM: $\tilde{\mu}H \ll E$; we assume $\tilde{\mu}H/E \approx 0$ (this is quite natural since in a typical laboratory $E \sim 1 \text{ GeV}$, $H \sim 10^4 \text{ Gauss}$, and $\tilde{\mu}H/E \ll m_e/E$, ϑ provided that $b \gg 10^{-20} \text{ eV}$)
- however, no assumption of smallness of artheta

Calculation of the radiation distribution [1]

In the chosen zero-order approximation in $\tilde{\mu}H$, the presence of b_0 and μ affects only the spin coefficients of the eigenfunctions, i.e. the electron polarization:

$$\hat{H}_{\rm D} \to \boldsymbol{\alpha} \hat{\boldsymbol{P}} + m_e \gamma^0, \quad E \to \sqrt{m_e^2 + 2eHn + p_z^2}.$$

In this case, a conventional quasi-classical theory of synchrotron radiation can be applied (within the assumption that $p_z = 0$). However, initial and final spin polarization states should be treated as mixed ('longitudinal-transversal'), since ϑ is finite.

35 / 47

August 27, 2007

Calculation of the radiation distribution [2]

Total radiation power in a spherical coordinate system with the z-axis oriented along H:

$$W = W_{cl} \int dy \, \sin \theta \, d\theta \, \frac{27}{64\pi^2} \, \frac{y^2}{\lambda^5 (1+\xi y)^4} \, \Phi, \quad W_{cl} = \frac{8}{27} \, (em\xi)^2,$$

where y is a dimensionless variable defining the radiation frequency, ξ is a parameter characterizing the role of quantum effects (in the quasi-classical theory of synchrotron radiation):

$$\frac{k}{E} = \frac{\xi y}{1+\xi y}, \quad 0 < y < +\infty; \quad \xi = \frac{3}{2} \frac{H}{H_c} \frac{1}{\lambda}.$$

The signature of the Lorentz violation is contained in Φ , which depends on the spin coefficients.

Explicit form of spectral-angular distribution [1]

Asymptotic expressions for Φ , for the σ - and π -components of linear polarization of the radiation without a spin-flip ($\zeta' = \zeta$):

$$\begin{split} \Phi_{\sigma}^{+} &= \hat{\lambda}^{2} \Big((2+\xi y) \hat{\lambda} K_{2/3}(z) - \zeta(\xi y) (\lambda \cos \vartheta - \cos \theta \sin \vartheta) K_{1/3}(z) \Big)^{2}, \\ \Phi_{\pi}^{+} &= \hat{\lambda}^{2} \Big((2+\xi y) \cos \theta K_{1/3}(z) + \zeta(\xi y) \sin \vartheta \, \hat{\lambda} K_{2/3}(z) \Big)^{2}, \\ &z &= \frac{y}{2} \left(\hat{\lambda}/\lambda \right)^{3}, \quad \hat{\lambda}^{2} = \cos^{2} \theta + \lambda^{2} \sin^{2} \theta, \end{split}$$

 $K_
u(z)$ are the Macdonald cylindrical functions.

Limits: $\vartheta = 0$, $\frac{\pi}{2}$ (correspond to $\Pi = \Pi_{\perp}$, Π_{\parallel}).

Explicit form of spectral-angular distribution [2]

Asymptotic expressions for Φ , for the σ - and π -components of linear polarization of the radiation with a spin-flip ($\zeta' = -\zeta$):

$$\begin{split} \Phi_{\sigma}^{-} &= \hat{\lambda}^{2} \Big((\xi y) (\cos \theta \cos \vartheta + \lambda \sin \vartheta) K_{1/3}(z) \Big)^{2}, \\ \Phi_{\pi}^{-} &= \hat{\lambda}^{2} \Big((\xi y) \big(\cos \vartheta \, \hat{\lambda} \, K_{2/3}(z) + \zeta \, \lambda \, K_{1/3}(z) \big) \Big)^{2}, \\ &z &= \frac{y}{2} \left(\hat{\lambda} / \lambda \right)^{3}, \quad \hat{\lambda}^{2} = \cos^{2} \theta + \lambda^{2} \sin^{2} \theta, \end{split}$$

 $K_
u(z)$ are the Macdonald cylindrical functions.

Limits: $\vartheta = 0$, $\frac{\pi}{2}$ (correspond to $\Pi = \Pi_{\perp}$, Π_{\parallel}).

Explicit form of spectral-angular distribution [3]

Dominating effect: asymmetry of synchrotron radiation relative to the electron orbit plane. This asymmetry is absent when $\Pi = \Pi_{\perp}$ and appears due a longitudinal admixture to the electron polarization. In other words, it exists due to a non-conservation of the conventional integral of motion Π_{\perp} and its modification stemming from the violation of Lorentz invariance:

 $\Pi_{\perp} \to \Pi_{\perp} \cos \vartheta + \Pi_{\parallel} \sin \vartheta,$

The asymmetry also maintains for unpolarized electrons.

Explicit form of spectral-angular distribution [4]

Puc.: Normalized angular distribution $\Phi_i^+(\theta)$ for k = 1 MeV, $\zeta = \pm 1$ in the case $H = 10^4 \text{ Gauss}$, E = 1 GeV, $b_0 \sim 10^{-9} \text{ eV}$, $\vartheta = 10^{-3}$.

Factor of asymmetry:
$$a = \frac{w_{up} - w_{down}}{w_{up} + w_{down}}$$
, where $w_{up} = \int_0^{\frac{\pi}{2}} \sin \theta \, d\theta \, \Phi$,
 $w_{down} = \int_{\frac{\pi}{2}}^{\pi} \sin \theta \, d\theta \, \Phi$.

Explicit form of spectral-angular distribution [5]

Puc.: Normalized angular distribution $\Phi_i^-(\theta)$ for k = 1 MeV, $\zeta = \pm 1$ in the case $H = 10^4 \text{ Gauss}$, E = 1 GeV, $b_0 \sim 10^{-9} \text{ eV}$, $\vartheta = 10^{-3}$.

Factor of asymmetry:
$$a = \frac{w_{up} - w_{down}}{w_{up} + w_{down}}$$
, where $w_{up} = \int_0^{\frac{\pi}{2}} \sin \theta \, d\theta \, \Phi$,
 $w_{down} = \int_{\frac{\pi}{2}}^{\pi} \sin \theta \, d\theta \, \Phi$.

2 Hydrogen-like bound state

- Quasirelativistic approach
- ullet Expansion of the Dirac equation with respect to b^0
- Radiative transitions

Synchrotron radiation

- The Model
- Eigenstate problem
- Radiative transitions
- Discussion

Obtained constraints on b_0

• Experimental evidence confirms the 'transversality' of electron states, therefore we can conclude that $\vartheta \ll 1$. Taken in the laboratory conditions ($E \sim 1$ GeV, $H \sim 10^4$ Gauss), this gives:

$$|b_0| \ll \mu H \sim 10^{-6} \, \mathrm{eV}$$

• If *reliable* data would be obtained for the observation of the radiation of the electron anomalous magnetic moment, demonstrating no signature of $\vartheta \neq 0$, that would imply $\vartheta \lesssim \tilde{\mu}H/E$, and thus,

$$|b_0| \lesssim 10^{-20} \, \text{eV}.$$

Kharlanov, Frolov, Zhukovsky (MSU) Bound State and SR in SME

A short summary

By solving the eigenstate problem, we have found that the nonperturbative interaction between the electron AMM and the Lorentz-violating condensate b_0 can affect both the spectrum and the polarization properties of the electron, the latter acquiring a longitudinal contribution.

This effect, causes, in turn, a specific asymmetry of the synchrotron radiation of an ultrarelativistic electron. For a polarized electron, the asymmetry becomes observable even for minuscule values of b_0 .

Using the predicted radiation distribution, we have obtained the new stringent constraints on b_0 .

Hydrogen-like bound state

- Quasirelativistic approach
- ullet Expansion of the Dirac equation with respect to b^0
- Radiative transitions

Synchrotron radiation

- The Model
- Eigenstate problem
- Radiative transitions
- Discussion

Kharlanov, Frolov, Zhukovsky (MSU)

4 Conclusion

The investigation of the two systems discussed above showed that the Lorentz-violating interaction with b_0 expresses itself in:

- the modified electron spectrum and integrals of motion (parity or polarization),
- the nonpertubative interaction with its AMM,
- the asymmetry of its radiation, especially for polarized particles,
- the contribution to the anapole moment of the electron orbital.

The results obtained seem promising in suggesting new experiments, and even now gave us new stringent constraints on b_0 .

References:

 [1] O.G.Kharlanov and V.Ch.Zhukovsky, arXiv:0705.3306 (hep-th)
 [2] I.E.Frolov and V.Ch.Zhukovsky, J.Phys.A 40, 10625-10640 (2007), arXiv:0705.0882 (hep-th)

Thanks for your attention!

æ

3.0

A B A A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A