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Introduction

The Background [1]

There exist some theories (but not the Standard Model itself!) that
suggest a self-consistent description of quantum gravity. However,
they are too complicated and contain many undetermined parameters

In string and some other theories, a spontaneous breaking of Lorentz
and CPT invariance can occur at `low' energies E �MP ∼ 1019GeV
[Kosteleck�y, Jackiw, Coleman, Glashow, Colladay, et al.]

For the study of Lorentz violation in these conditions, The Standard
Model Extension (SME) was elaborated [Kosteleck�y, Colladay, et al.]
that describes it in the most general way

No evidence for the existence of Lorentz violation has been found to
date; all SME-couplings are tightly constrained, except for the few
ones, e.g. the zero component of the axial vector bµ:

|b0| . 10−2eV,

|b| . 10−19eV.
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Introduction

The Background [2]

The study of atom within SME has yet concerned, primarily, its
spectroscopic properties [Kosteleck�y, Bluhm, Russell, Lane, Ferreira et
al.]. Solving the atomic eigenstate problem would also give the
possibility to study its radiative properties
Atomic parity can be e�ectively violated due to the weak interaction
[Zeldovich, Khriplovich, Novikov, Bouchiat, Curtis-Michel] and directly
by the interaction with the Lorentz-violating condensate b0.

Quantum theory of synchrotron radiation (SR) has been developed
within the Standard Model [Sokolov, Ternov, Bagrov, Zhukovsky et
al.] that even took the electron AMM into account.
This theory was based on the method of exact solutions in the
external magnetic �eld
Although this method has been employed in SME [Lobanov,
Zhukovsky, Murchikova], SR has been treated only classically
[Altschul]
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Introduction

The Essence

Working within the context of Lorentz-violating extended electrodynamics
(a part of the Standard Model Extension (SME)), we investigate the
following physical systems:

electron bound state in the Coulomb potential (hydrogen-like atom),

electron in a constant homogeneous magnetic �eld and synchrotron
radiation (SR).

Consideration of these problems is quite similar. It includes studying the
following aspects:

integrals of motion in the external �eld,

one-particle eigenstates and spectrum in the external �eld,

quantum transitions: interaction with photons within the Furry
picture, radiation distribution.
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Introduction

Extended electrodynamics

We use the minimal CPT-odd form of the extended electrodynamics with
electrons and photons:

L = −1
4
FµνF

µν + ψ̄ (iγµDµ −me − bµγ5γ
µ)ψ.

Electron charge qe = −e < 0, α = e2/4π; Dµ = ∂µ − ieAµ, γ5 = −iγ0γ1γ2γ3.

bµ is a constant axial vector condensate that introduces a Lorentz-violating
CPT-odd interaction
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Hydrogen-like bound state

The Model

One-particle approximation for e− in an external �eld Aµ(r, t) within
extended electrodynamics:

i~
∂ψ

∂t
= ĤD(t)ψ, ‖ψ‖2 = 1;

ĤD(t) = cα · P̂ + γ0mec
2 − eA0 − b0γ5 − b ·Σ,

αi = γ0γi, Σi = −αiγ5, P̂ = p̂ +
e

c
A.

Expansion into a series with respect to bµ.

Of interest is a spherically-symmetric potential, e.g. the Coulomb
potential: Aµ =

{
Ze
4πr ,0

}
.

In such a �eld, P-parity is unbroken unless b0 6= 0.
We will show both the quasirelativistic (for Zα� 1) and relativistic
(for Zα < 1) approaches.
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Hydrogen-like bound state Quasirelativistic approach

Quasirelativistic Hamiltonian in the External Field [1]

To obtain it, we will use the expansion into a series with respect to 1/c,
assuming ~, c 6= 1, bµ = {cbt, b} (the Landau method).

0. Consider an electron with a wavefunction ψ in the positive energy
continuum:

i~ ∂ψ/∂t = ĤD(t)ψ, ‖ψ‖2 = 1.

Assume P̂ ,E,H = O(c0), when acting upon ψ, and bt, b = O(c0).

1.Perform an energy shift: ψ(r, t) = exp
{
−imec2

~ t
}(u

v

)
2. In the standard representation of the Dirac matrices,(

λ̂ −cΛ̂
−cΛ̂ λ̂+ 2mec

2

)(
u
v

)
= 0, Λ̂ ≡ σP + bt, λ̂ ≡ eA0 + σ · b + i~ ∂

∂t
.

Then v = 1
2mec

(
1− λ̂

2mec2

)
Λ̂u+O(1/c4).

3. Quasirelativistic wavefunction: Φ(x) ≡
(
1 + Λ̂2

8m2
ec2

)
u.
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Hydrogen-like bound state Quasirelativistic approach

Quasirelativistic Hamiltonian in the External Field [2]

4. The equations of motion in the 1/c2 approximation (general form):{
λ̂− Λ̂2

2me

(
1− Λ̂2

4m2
ec

2

)
+

1
8m2

ec
2

[[
λ̂, Λ̂

]
, Λ̂
]}

Φ = O(1/c3).

5. The quasirelativistic Hamiltonian (gives unitary evolution and U(1)
gauge invariance):

ĥ =
P̂ ′

b
2

2me

(
1−

P̂ ′
b
2

4m2
ec

2

)
+

e~
2mec

σH − σb− eA0 +

+
e~

4m2
ec

2
σ[EP ] +

e~2

8m2
ec

2
div E +

σ[P [bP ]]
2m2

ec
2

;

P̂ ′2
b ≡ P̂

2
b − 2b2t , P̂ b = P̂ + btσ.

6. The results agree with [Kosteleck�y, Lane, 1999] and [Ferreira Jr.,
Moucherek, 2006].
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Hydrogen-like bound state Quasirelativistic approach

The 1/c2-approximation in the Coulomb �eld

eA0 = Zα~c
r , A = 0, linear order in bµ = {cbt,0}

Unitary transformation Φ = exp
{

ibt
~
(
1 + Zre

2r

)
σ · r

}
Φ̃, re = α~

mec ,
reduces the problem to that without Lorentz-violating terms. After the
inverse transformation, we obtain:

Φnljmj
(r) = Rnlj(r)

{
Y l

jmj
(r/r) +

κbtr
~

(
1 +

Zre
2r

)
Y l′

jmj
(r/r)

}
,

E = Enj |b0=0 = −Z~R
n2

[
1 +

Z2α2

n

(
1

j + 1/2
− 3

4n

)]
,(

l̂
2
+
bt
~

(
1 +

Zre
2r

)
σ([r̂l̂]− [̂lr̂])

)
Φnljmj

= l(l + 1)Φnljmj
;

R = α2mec
2/2, l′ ≡ 2j − l, κ ≡ (−1)

l−l′+1
2 = ∓1 for l = j ± 1/2.

Rnlj(r) remain the same radial functions that recover in the b0 = 0 case.

We will consider this problem in more detail within the relativistic approach.
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Hydrogen-like bound state Expansion of the Dirac equation with respect to b0

Gauge-invariant unitary transformation [1]

~ = c = 1, α = e2/4π, quadratic approximation in bµ = {b0,0}.
Consider an electron in a spherically-symmetric potential φ(r), and in a

weak `external' �eld A
(e)
µ (x), so that Aµ(x) = {φ(r) +A

(e)
0 (x),A(e)(x)}.

The transformation:

ψ = e−ib0∆̂ψ̃, ˆ̃HD − i
∂

∂t
= eib0∆̂ ·

(
ĤD − i

∂

∂t

)
· e−ib0∆̂;

∆̂ = Σr − i

me
(ΣL̂ + 1)γ0γ5, L̂ = [rP̂ ] = −[P̂ r].

The transformed Hamiltonian:

ˆ̃HD ≈ ĤD |b0=0 −
b20
me

f̂γ0 − d̂AE(e) − µ̂AH(e) + Ĥ
(2)
int

[A(e)],

where Ĥ
(2)
int

[A(e)] contains b20-corrections to the interaction with the

external �eld, and f̂ ≡ Σl̂ + 1.
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Hydrogen-like bound state Expansion of the Dirac equation with respect to b0

Gauge-invariant unitary transformation [2]

Corrections to the magnetic and electric dipole moment operators:

µ̂A =
eb0
me

γ0[Σr], d̂A = iγ5µ̂A.

These two operators have zero expectation values in any eigenstate of the

nonperturbed Hamiltonian. Moreover, since [∆̂, φ(r)] = 0, ˆ̃HD does not
include additional terms containing φ(r), and that holds exactly, i.e. in
every order in b0.

The correction µ̂A generates a nonzero anapole magnetic moment T of
the electron orbital, which interacts as −T · rotH(e) with the external
magnetic �eld. In the ground state of hydrogen (Z = 1),

T = 2er2B

(
b0
mec2

)
msez, rB is the Bohr radius; ms = ±1/2.

Anapole moment is speci�c for systems with broken parity [Zeldovich,1957;
Borisov, Zhukovsky, Ternov, 1989].
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Hydrogen-like bound state Expansion of the Dirac equation with respect to b0

Removing b0 in a spherically-symmetric potential [1]

A(e) = 0 ⇒ ∆̂ = Σ · r − i
me
f̂γ0γ5; φ(r) is arbitrary!

Transformed Hamiltonian: ˆ̃HD ≈ αp̂ +meγ
0 − eφ(r)− b20

me
f̂γ0.

This Hamiltonian is P-even, then ψ̃ can be taken as follows:

ψ̃nljmj
(r, t) =

(
R

(1)
nlj(r)Y

l
jmj

(r/r)

κR(2)
nlj(r)Y

l′
jmj

(r/r)

)
,

j =
1

2
,
3

2
, . . ., mj = −j, j; l = j ± 1/2 determines the parity P ≡ (−1)l.

Moreover, f̂γ0ψ̃ = fψ̃, f ≡ κ(j + 1/2) = ∓1 for l = j ± 1/2. ˆ̃HD

therefore formally describes an electron in the potential φ(r) without
Lorentz violation, but with a splitting correction (−b20f/me) to the energy:

E = Ẽ = E
(0)
nlj ± (j + 1/2)

b20
me

for l = j ± 1/2,

where {E(0)
nlj} is the spectrum in the b0 = 0 case.
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Hydrogen-like bound state Expansion of the Dirac equation with respect to b0

Removing b0 in a spherically-symmetric potential [2]

In the initial representation: modi�ed parity: P̂b = e−2ib0∆̂P̂ ,

eigenfunction: ψnljmj
(r, t) = e−iEnljt exp

{
−b

2
0

2

(
r2 +

(j + 1/2)2

m2
e

)}
×

×

R(1)
nljY

l
jmj

− b0κ
(

f
me
R

(2)
nlj(r)− rR

(1)
nlj(r)

)
Y l′

jmj

κR(2)
nljY

l′
jmj

− b0

(
f

me
R

(1)
nlj(r) + rR

(2)
nlj(r)

)
Y l

jmj

 ,

Enlj = E
(0)
nlj ± (j + 1/2)

b20
me

for l = j ± 1/2.

In the Coulomb potential (eφ(r) = Zα/r), the radial functions R
(1,2)
nlj are

well-known [Gordon; Darwin, 1928]. We don't demonstrate them for their
complexity.
The degeneracy over l typical for this case is now removed, the splitting
being . 105Hz (if b0 . 10−2eV). However, it increases linearly with j.
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Hydrogen-like bound state Radiative transitions

Approximations

The angular distribution of the dipole one-photon radiation for the
transition |i〉b0 → |f〉b0 , in the nonrelativistic and linear in b0
approximation:

dwfi

dΩk
=

k3

2π~

∣∣∣e(τ)∗ · 〈f |0 m̂ |i〉0
∣∣∣2; k =

E − E′

~c
,

m̂ = er̂ − ie

2
(k · r̂)r̂ −

[
k

k
× µ̂

]
,

µ̂ =
e~

2mec
(̂l + σ) + µ̂A, µ̂A =

eb0
mec2

[σr̂].

k and e(τ) de�ne the photon momentum and polarization (τ),
|i〉0 and |f〉0 are the corresponding eigenstates in the absence of b0; E,E

′

are their energies.
The Lorentz violation only modi�es the electron magnetic moment
operator µ̂.
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Hydrogen-like bound state Radiative transitions

Transition:
∣∣2p1/2, mj = 1/2

〉
→
∣∣∣1s1/2, m

′
j = −1/2

〉
Distribution (summed over the photon polarizations):

dw

dΩk
=

256α3R

6561π

{
1 + cos2 θ − 8b0

mec2
cos θ

}
,

R = α2mec2

2~3 is the Rydberg constant, θ is the angle between k and the axis of the

angular moment quantization (z).

The asymmetry appears due to the parity-nonconserving radiation
processes involving µ̂A and the interference of the corresponding
radiation with the electric dipole radiation.

Within the linear order in b0, the total radiation rates are una�ected.

The factor of asymmetry is of the order b0
mec2

. 10−8

For unpolarized atoms, a spherically-symmetric distribution is restored.
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Hydrogen-like bound state Radiative transitions

An example of a transition [2]

Transition:
∣∣2p1/2, mj = 1/2

〉
→
∣∣∣1s1/2, m

′
j = −1/2

〉
dw

dΩk
=

256α3R

6561π

{
1 + cos2 θ − 8b0

mec2
cos θ

}
,

To make the picture more vivid, we chose b0/mec
2 = 0.05 (b0 > 0).

The distribution for b0 = 0 is shown in dash.
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Hydrogen-like bound state Radiative transitions

A short summary

We have studied the b0-induced Lorentz violation both in its nonrelativistic
and relativistic regimes. The eigenstate problem in a spherically symmetric
potential was reduced to that without Lorentz violation.

The presence of b0 causes the violation of atomic parity, which results in
the additional energy splitting over l quantum number and in the existence
of the b0-induced anapole moment of the orbital.

The radiation of polarized atoms, in turn, demonstrates a speci�c
asymmetry.
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Synchrotron radiation The Model

The Model

Quantum treatment of electron motion within extended QED with bµ

bµ = {b0,0} in the observer frame

Classical constant homogeneous external magnetic �eld H,

H � Hc = m2
e

e ≈ 4.41 · 1013Gauss

Anomalous magnetic moment (AMM) µ ≈ α
2π

e
2me

since H � Hc

L = ψ̄
(
iγµDµ −me +

µ

2
σαβFαβ − γ5γ

µbµ

)
ψ,

γ5 = −iγ0γ1γ2γ3, σµν = i
2
[γµ, γν ], Dµ = ∂µ − ieAµ, e > 0 (qe = −e).
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Synchrotron radiation Eigenstate problem

Eigenstate problem

Let H = Hez, H = const > 0, Aµ(x) = {0, 1
2 [Hr]} so that Az = 0.

For an eigenstate |ψ〉, the wavefunction ψ(x) = e−iEtΨ(r), and we come
to the modi�ed Dirac eigenstate problem:

ĤDΨ(r) = EΨ(r),

where

ĤD = αP̂ + γ0me + µHγ0Σ3 − b0γ5.

[ĤD, p̂z] = 0, so let us resort to a subspace with de�nite pz where

Ψ(r) =
eipzz

√
2π
φ(ρ, ϕ),

r ↔ {ρ, ϕ, z} are the cylindrical coordinates.
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Synchrotron radiation Eigenstate problem

Transformation to e�ective quantities

Lorentz-violating γ5-term in the Hamiltonian can be e�ectively removed
with the help of a unitary transformation:

φ = e−
ϑ
2
γ3
φ̃, ˆ̃HDφ̃ = Eφ̃; ϑ = arctan

b0
µH

,

ˆ̃HD = α ˆ̃P + γ0m̃e + µ̃Hγ0Σ3,
ˆ̃P = {P̂1, P̂2, p̃z}.

This fact, however, does not indicate that the Lorentz violation is
nonphysical. Instead, e�ective quantities arise in the e�ective Hamiltonian
ˆ̃HD :

e�ective AMM µ̃, such that µ̃H =
√

(µH)2 + b20,

e�ective mass and z-momentum

(
m̃e

p̃z

)
=
(

cosϑ sinϑ
− sinϑ cosϑ

)(
me

pz

)
.

Except for the change (me, pz, µ) → (m̃e, p̃z, µ̃), the eigenstates φ̃ are the
same as those found in [Ternov, Bagrov, Zhukovsky, 1966].
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Synchrotron radiation Eigenstate problem

Energy Spectrum and Integrals of Motion

Full set of quantum numbers and the corresponding integrals of motion (in
the initial representation):
quantum number int. of motion eigenvalue

ε = ±1 ĤD E = ε
√

(Π + µ̃H)2 + p̃2
z

ζ = ±1,
n = 0, 1, 2, . . .

Π̂ = Π̂⊥ cosϑ+ Π̂‖ sinϑ Π = ζ
√
m̃2

e + 2eHn

pz ∈ R p̂z = −i ∂
∂z pz

s = 0, 1, 2, . . . Ĵz = −i ∂
∂ϕ + Σ3

2 n− s− 1/2

Here, Π̂ is the operator of electron polarization properties, which contains a
transversal and a longitudinal parts:

Π̂⊥ = meΣ3 + iγ0γ5[Σ× P̂ ]z, Π̂‖ = ΣP̂ .

When b0 6= 0, the transversal polarization is no more conserved and the
electron eigenstates possess a `mixed' (partially longitudinal) polarization.
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Synchrotron radiation Eigenstate problem

Eigenfunctions [1]

After the inverse unitary transformation is performed, the solutions for Ψ
have the form:

Ψ(ρ, ϕ, z) =
eipz z

√
2π

ei(n−s−1/2)ϕ

√
2π

√
eH


c1 e

−iϕ/2 In−1,s(χ)
ic2 e

iϕ/2 In,s(χ)
c3 e

−iϕ/2 In−1,s(χ)
ic4 e

iϕ/2 In,s(χ)

 , χ ≡ eH

2
ρ2,

Laguerre functions : In,s(χ) =
√

s!
n! e

−χ/2χ(n−s)/2Ln−s
s (χ),

Laguerre polynomials : Ll
s(χ) = 1

s!e
χχ−l ds

dχs

(
e−χχs+l

)
.
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Synchrotron radiation Eigenstate problem

Eigenfunctions [2]

State-dependent spin coe�cients {ca} for the normalized eigenfunctions:
c1
c2
c3
c4

 =
1

2
√

2


A(Pα + εζQβ)

−ζB(Pα − εζQβ)
A(Pβ − εζQα)
ζB(Pβ + εζQα)

 ,

A =

√
1 +

m̃e

Π
, B =

√
1− m̃e

Π
, P =

√
1 +

p̃z

E
, Q =

√
1− p̃z

E
,

α = cos
ϑ

2
− sin

ϑ

2
, β = cos

ϑ

2
+ sin

ϑ

2
.
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Synchrotron radiation Radiative transitions

General theory

Total radiation power in the leading order in e2 for the spontaneous
transition from an eigenstate |i〉 to |f〉 with energies E and E′,
respectively:

W =
e2

2π

∑
τ=σ,π

∫
d3k δ(E′ − E − k)

∣∣∣e(τ)∗ · 〈f |αe−ikr |i〉
∣∣∣2 ,

k is the photon wave vector,
e(τ) is the vector describing the photon polarization (τ).

The ultimate goal is to obtain the spectral-angular radiation distribution
(per unit length along z) summarized over all �nal states |f〉 with energies
E′ < E (i.e. over all allowed transitions from the �xed initial state).
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Synchrotron radiation Radiative transitions

Used approximations

ultrarelativistic electron: me/E ≡ λ� 1
`weak' magnetic �eld: H � Hc (taken together, these two
assumptions imply that n� 1, that corresponds to a quasi-classical
electron motion)

small electron AMM: µ̃H � E; we assume µ̃H/E ≈ 0 (this is quite
natural since in a typical laboratory E ∼ 1GeV, H ∼ 104 Gauss, and
µ̃H/E � me/E, ϑ provided that b� 10−20 eV)

however, no assumption of smallness of ϑ
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Synchrotron radiation Radiative transitions

Calculation of the radiation distribution [1]

In the chosen zero-order approximation in µ̃H, the presence of b0 and µ
a�ects only the spin coe�cients of the eigenfunctions, i.e. the electron
polarization:

ĤD → αP̂ +meγ
0, E →

√
m2

e + 2eHn+ p2
z.

In this case, a conventional quasi-classical theory of synchrotron radiation
can be applied (within the assumption that pz = 0). However, initial and
�nal spin polarization states should be treated as mixed
(`longitudinal-transversal'), since ϑ is �nite.
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Synchrotron radiation Radiative transitions

Calculation of the radiation distribution [2]

Total radiation power in a spherical coordinate system with the z-axis
oriented along H:

W = Wcl

∫
dy sin θ dθ

27
64π2

y2

λ5(1 + ξy)4
Φ, Wcl =

8
27

(emξ)2,

where y is a dimensionless variable de�ning the radiation frequency, ξ is a
parameter characterizing the role of quantum e�ects (in the quasi-classical
theory of synchrotron radiation):

k

E
=

ξy

1 + ξy
, 0 < y < +∞; ξ =

3
2
H

Hc

1
λ
.

The signature of the Lorentz violation is contained in Φ, which depends on
the spin coe�cients.
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Synchrotron radiation Radiative transitions

Explicit form of spectral-angular distribution [1]

Asymptotic expressions for Φ, for the σ- and π-components of linear
polarization of the radiation without a spin-�ip (ζ ′ = ζ):

Φ+
σ = λ̂2

(
(2 + ξy)λ̂K2/3(z)− ζ(ξy)(λ cosϑ− cos θ sinϑ)K1/3(z)

)2
,

Φ+
π = λ̂2

(
(2 + ξy) cos θK1/3(z) + ζ(ξy) sinϑ λ̂K2/3(z)

)2
,

z =
y

2

(
λ̂/λ

)3
, λ̂2 = cos2 θ + λ2 sin2 θ,

Kν(z) are the Macdonald cylindrical functions.

Limits: ϑ = 0, π
2 (correspond to Π = Π⊥, Π‖).
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Synchrotron radiation Radiative transitions

Explicit form of spectral-angular distribution [2]

Asymptotic expressions for Φ, for the σ- and π-components of linear
polarization of the radiation with a spin-�ip (ζ ′ = −ζ):

Φ−
σ = λ̂2

(
(ξy)(cos θ cosϑ+ λ sinϑ)K1/3(z)

)2
,

Φ−
π = λ̂2

(
(ξy)

(
cosϑ λ̂K2/3(z) + ζ λK1/3(z)

))2
,

z =
y

2

(
λ̂/λ

)3
, λ̂2 = cos2 θ + λ2 sin2 θ,

Kν(z) are the Macdonald cylindrical functions.

Limits: ϑ = 0, π
2 (correspond to Π = Π⊥, Π‖).
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Synchrotron radiation Radiative transitions

Explicit form of spectral-angular distribution [3]

Dominating e�ect: asymmetry of synchrotron radiation relative to the
electron orbit plane. This asymmetry is absent when Π = Π⊥ and appears
due a longitudinal admixture to the electron polarization. In other words, it
exists due to a non-conservation of the conventional integral of motion Π⊥
and its modi�cation stemming from the violation of Lorentz invariance:

Π⊥ → Π⊥ cosϑ+ Π‖ sinϑ,

The asymmetry also maintains for unpolarized electrons.
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Synchrotron radiation Radiative transitions

Explicit form of spectral-angular distribution [4]

Φ+
σ (θ), ζ = −1; a ' −1.2 · 10−8 Φ+

π (θ), ζ = −1; a ' −5.4 · 10−5

10000 20000 30000 40000 50000

-0.2
-0.1

0.1
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10000 20000 30000

-0.4
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0.4

Φ+
σ (θ), ζ = +1; a ' 1.2 · 10−8 Φ+

π (θ), ζ = +1; a ' 5.4 · 10−5

10000 20000 30000 40000 50000
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0.1
0.2

10000 20000 30000

-0.4

-0.2

0.2

0.4

Ðèñ.: Normalized angular distribution Φ+
i (θ) for k = 1MeV, ζ = ±1 in the case

H = 104 Gauss, E = 1GeV, b0 ∼ 10−9 eV, ϑ = 10−3.

Factor of asymmetry: a = wup−wdown

wup+wdown
, where wup =

∫ π
2

0 sin θ dθΦ,

wdown =
∫ π

π
2

sin θ dθΦ.

Kharlanov, Frolov, Zhukovsky (MSU) Bound State and SR in SME August 27, 2007 40 / 47



Synchrotron radiation Radiative transitions

Explicit form of spectral-angular distribution [5]

Φ−σ (θ), ζ = −1; a ' 0.11 Φ−π (θ), ζ = −1; a = 0
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Φ−σ (θ), ζ = +1; a ' 0.11 Φ−π (θ), ζ = +1; a = 0
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Ðèñ.: Normalized angular distribution Φ−
i (θ) for k = 1MeV, ζ = ±1 in the case

H = 104 Gauss, E = 1GeV, b0 ∼ 10−9 eV, ϑ = 10−3.

Factor of asymmetry: a = wup−wdown

wup+wdown
, where wup =

∫ π
2

0 sin θ dθΦ,

wdown =
∫ π

π
2

sin θ dθΦ.
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Synchrotron radiation Discussion

Obtained constraints on b0

Experimental evidence con�rms the 'transversality' of electron states,
therefore we can conclude that ϑ� 1. Taken in the laboratory
conditions (E ∼ 1GeV, H ∼ 104 Gauss), this gives:

|b0| � µH ∼ 10−6 eV

If reliable data would be obtained for the observation of the radiation
of the electron anomalous magnetic moment, demonstrating no
signature of ϑ 6= 0, that would imply ϑ . µ̃H/E, and thus,

|b0| . 10−20 eV.
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Synchrotron radiation Discussion

A short summary

By solving the eigenstate problem, we have found that the nonperturbative
interaction between the electron AMM and the Lorentz-violating
condensate b0 can a�ect both the spectrum and the polarization properties
of the electron, the latter acquiring a longitudinal contribution.

This e�ect, causes, in turn, a speci�c asymmetry of the synchrotron
radiation of an ultrarelativistic electron. For a polarized electron, the
asymmetry becomes observable even for minuscule values of b0.

Using the predicted radiation distribution, we have obtained the new
stringent constraints on b0.
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Conclusion

The investigation of the two systems discussed above showed that the
Lorentz-violating interaction with b0 expresses itself in:

the modi�ed electron spectrum and integrals of motion (parity or
polarization),

the nonpertubative interaction with its AMM,

the asymmetry of its radiation, especially for polarized particles,

the contribution to the anapole moment of the electron orbital.

The results obtained seem promising in suggesting new experiments, and
even now gave us new stringent constraints on b0.
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Conclusion

Thanks for your attention!
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