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To specity different types of cosmic fluids one usually uses a
phenomenological relation between the pressure density p and the
energy density o, corresponding to each component of fluid

p = wo,

where w 1s the state parameter.

Experiments:  wpp= —140.2.



Experiments:  wpp,= —1+0.2.

= -] - —-—. 1
H is the Hubble parameter.

e The first case, wp > —1, is achieved in quintessence models.

e The second case, wpp = —1, is realized by means of the
cosmological constant.

e The third case, wp» < —1 can be realized due to a scalar field
with a ghost (phantom) kinetic term.

Two-fields models with the crossing of the cosmological constant
barrier include one phantom scalar field and one usual scalar field.



We consider the case wpp < —1.

All natural energy conditions are violated and there are prob-
lems of instability at classical and quantum levels. A possible way
to evade the instability problem for models with w < —1 is to
yield a phantom model as an effective one, arising from a more
fundamental theory:.

A model with higher derivatives such as qbe_ng 11in the simplest
approximation: gbe_ng ~ ¢? — o gives a kinetic term with a
ghost sign.

Such a possibility does appear in the string field theory frame-
work:

I.Ya. Aref’eva, astro-ph/0410443, 200/.

Nonlocal cosmological models:

[.Ya. Aref’eva, A.S. Koshelev, 2006; A.S. Koshelev, 2007:

[.Ya. Aref’eva, L.V. Joukovskaya, 5.V., 2007; L.V. Joukovskaya, 2007

4



1 TWO-FIELDS MODEL

We consider a model of Einstein gravity interacting with a single
phantom scalar field ¢ and one standard scalar field & in the
spatially flat Friedmann Universe:

ds® = — dt* + a*(t) (dm% + das + d:c%) .

The equations of motion are as follows (m]% = constant):
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2 THE SFT INSPIRED MODELS

@ is an open string tachyon.
¢ is the closed string tachion.
The string theory provides asymptotic conditions for solutions.
The phantom field ¢(t) smoothly rolls from the unstable per-
turbative vacuum (¢ = 0) to a nonperturbative one, say, ¢ = 1
and stops there.
The field £(t) goes asymptotically to zero in the infinite future.
In other words we assume

¢(O) =0, (5>
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The form of the potential is assumed to be given from the string
field theory within the level truncation scheme. An exact form of
the open-closed tachyon interaction is not known and we consider

the simplest polynomial interaction.
More exactly we impose the following restriction on V (¢, &):

e the potential is the sixth degree polynomial:
6 6—k

Vg, &) =D > g, (8)

k=0 j=0

e coefficient in front of 5-th and 6-th powers are of order 1/ m]%

and the limit ml% — 00 gives a nontrivial 4-th degree potential,

e the potential is even: V (¢, &) = V(—¢, —€). It means that if
k+ 7 is odd, then ¢g; = 0.



Questions:

1. Can we construct model with an exact solution,

which satisfies the asymptotic and boundary condi-
tions?

2. Is this solution unique?

3. Iswpp > —1 or wpg < —1 at late time?



3 POTENTIAL AND SUPERPOTENTIAL

To find the potential V' (¢, &) we assume that H(t) is a function
(superpotential) of ¢(t) and &(t): H(t) = Wi(p(t),&(t)). This

allows us to rewrite eq. (2) as
ow . oW . 1 /. -
0J0) 0& 2ms,
Equations (2)—(4) are solved provided the relations
oW 1 ow

EM Qm% ¢ 3—§ 2m2 3 )

V = 3m2W? + 2m} ((%—Z) — (%—?) 2) (10)

are satisfied (O. DeWolfe, D.Z. Freedman, S.S. Gubser, A. Karch,
Phys. Rev. D62 (2000) 046008, hep-th/9900134).
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4+ MODEL WITH EXACT SOLUTIONS

Let us construct a potential, which corresponds to fields

¢(t) = tanh(t), and  &(t) = \/ci(s;(—;)@ coj(t)' (11)

The functions ¢(t) and &(t) are solutions of the system
: 1
b=b(6"=1)+5&
= — ¢

The corresponding superpotential and potential are given by

Ht)=W($,&) = — (% (b (3 —~ ¢2) — 252) o (13)

p

(12)

2\ 2
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V= ( ("= 1)+ 2) > 12m?2 |
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Note that we have a freedom to choose the potential
does not changing solutions. The same functions ¢(t),
£(t) (and consequently the Hubble parameter H(t))
can correspond to different potentials V (¢, &).

1. System (12) is not unique: the functions ¢(t) and &(t) are
solutions of the following differential equations:

6=1—¢" éﬁ\/lf—Q. (14)

2. The solution is not violated if we add to the potential V' a
function 0V, which is such that 6V, 9(6V)/0¢ and 9(0V')/IE

are zero on the solution:

2
SV = A(€, 9 [¢2 bt - 1] | (15
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5 NEW SOLUTIONS

System
(2 1.
o= b(0 1) + 53¢ 16
§= — ¢k,

has not only solutions (11).
The general solution is defined in quadratures.

[n the case b = — 1/2 we can write it in the explicit form:
((02 1 4)et—to — e_<t_t0))
) =75 t—t —(t—tg)’
(C2 + 4)et=t0 4 20 + e~ (t=H0) (17)
4
§(t) =

(C2 4 4)et=t0 + 2C + e~ (t=10)]

where C' and tg are arbitrary constant.
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For all values of C' and t:

p(E£o0) = +1, £(+o0) = 0. (18)
If
t) = %1]@(02 +4), (19)
then
(0) = 0. (20)

S0, we have constructed the SFT inspired model with
two-parameter set of exact solutions, which satisfy
asymptotic and boundary conditions.
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In the case C' = 0 we obtain two one-parameter sets of solutions
¢o(t) = tanh(t —to), (21)

1
Solt) = + cosh(t —te)

(22)

Figure 1: ¢ and & (left), H (center) and wpp (right) at C' = 0 and m; = 1/6.
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If C' > 0 then the straightforward calculations give H(t) = 0 at
4 points. T'wo of these points are not real numbers. Other two
points are real if and only if C' < 2.

H(t) is a monotonic function at C' > 2 and has a maximum
and a minimum at 0 < C' < 2.

0,87
0,67
0,4

0,27

Figwre 2: ¢ and & (left), H (center) and wpp (right) at C' =1 and m; = 1/6.
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To consider the case C' < 0.
The corresponding H is equal to zero at 4 points: two points
are always real numbers, other two points are real at C' < —2.
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Figwe 3: ¢ and & (left), H (center) and wpp (right) at C' = —5 and m2 = 1/6.

16



S0, we have obtained the model with the polynomial potential:

2
V= l(1—q52+§2) ——gb LA ((3-¢%) +3§2)2, (23)
3 36ms3,
which has a two-parameter set of exact solutions.

This set can separated into two subsets, one of which corre-
sponds to the quintessence large time behaviour, another one cor-
responds to the phantom large time behaviour.

The obtained solutions have one and the same asymptotic con-
ditions.

S0, we can conclude that both quintessence and phantom large
time behaviors are possible to obtain from the SE'T inspired ef-
fective model with the polynomial potential.
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6 CONCLUSIONS

We consider the model with a phantom scalar field
+ an ordinary scalar field and obtain:

e H(t) is not a monotonic function. The state para-
meter wpp crosses the barrier wpp = —1

e We have a freedom to choose the potential for the
given solutions.

e Using the superpotential method we generalize a
one-parameter solutions to two-parameter solutions.

e Both quintessence and phantom late time behav-
iors are possible to obtain from the SFT inspired
effective model with one and the same potential.

18



