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To specify different types of cosmic fluids one usually uses a
phenomenological relation between the pressure density p and the
energy density ̺, corresponding to each component of fluid

p = w̺,

where w is the state parameter.

Experiments: wDE = − 1 ± 0.2.
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Experiments: wDE = − 1 ± 0.2.

wDE = −1 −
2

3

Ḣ

H2
. (1)

H is the Hubble parameter.

• The first case, wDE > −1, is achieved in quintessence models.

• The second case, wDE = −1, is realized by means of the
cosmological constant.

• The third case, wDE < −1 can be realized due to a scalar field
with a ghost (phantom) kinetic term.

Two-fields models with the crossing of the cosmological constant
barrier include one phantom scalar field and one usual scalar field.
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We consider the case wDE < −1.
All natural energy conditions are violated and there are prob-

lems of instability at classical and quantum levels. A possible way
to evade the instability problem for models with w < −1 is to
yield a phantom model as an effective one, arising from a more
fundamental theory.

A model with higher derivatives such as φe−�φ i in the simplest
approximation: φe−�φ ≃ φ2

− φ�φ gives a kinetic term with a
ghost sign.

Such a possibility does appear in the string field theory frame-
work:
I.Ya. Aref’eva, astro-ph/0410443, 2004.
Nonlocal cosmological models:
I.Ya. Aref’eva, A.S. Koshelev, 2006; A.S. Koshelev, 2007;
I.Ya. Aref’eva, L.V. Joukovskaya, S.V., 2007; L.V. Joukovskaya, 2007
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1 TWO-FIELDS MODEL

We consider a model of Einstein gravity interacting with a single
phantom scalar field φ and one standard scalar field ξ in the
spatially flat Friedmann Universe:

ds2 = − dt2 + a2(t)
(

dx2
1 + dx2

2 + dx2
3

)

.

The equations of motion are as follows (m2
p = constant):

2Ḣ =
1

m2
p

(

φ̇2
− ξ̇2

)

, (2)

3H2 =
1

m2
p

(

−
1

2
φ̇2 +

1

2
ξ̇2 + V

)

, (3)

φ̈ + 3Hφ̇ =
∂V

∂φ
, ξ̈ + 3Hξ̇ = −

∂V

∂ξ
. (4)
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2 THE SFT INSPIRED MODELS

φ is an open string tachyon.
ξ is the closed string tachion.

The string theory provides asymptotic conditions for solutions.
The phantom field φ(t) smoothly rolls from the unstable per-

turbative vacuum (φ = 0) to a nonperturbative one, say, φ = 1
and stops there.

The field ξ(t) goes asymptotically to zero in the infinite future.
In other words we assume

φ(0) = 0, (5)

φ(+∞) = 1, (6)

ξ(+∞) = 0. (7)
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The form of the potential is assumed to be given from the string
field theory within the level truncation scheme. An exact form of
the open-closed tachyon interaction is not known and we consider
the simplest polynomial interaction.

More exactly we impose the following restriction on V (φ, ξ):

• the potential is the sixth degree polynomial:

V (φ, ξ) =

6
∑

k=0

6−k
∑

j=0

ckjφ
kξj, (8)

• coefficient in front of 5-th and 6-th powers are of order 1/m2
p

and the limit m2
p → ∞ gives a nontrivial 4-th degree potential,

• the potential is even: V (φ, ξ) = V (−φ,−ξ). It means that if
k + j is odd, then ckj = 0.
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Questions:

1. Can we construct model with an exact solution,
which satisfies the asymptotic and boundary condi-
tions?

2. Is this solution unique?

3. Is wDE > −1 or wDE < −1 at late time?
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3 POTENTIAL AND SUPERPOTENTIAL

To find the potential V (φ, ξ) we assume that H(t) is a function
(superpotential) of φ(t) and ξ(t): H(t) = W (φ(t), ξ(t)). This
allows us to rewrite eq. (2) as

∂W

∂φ
φ̇ +

∂W

∂ξ
ξ̇ =

1

2m2
p

(

φ̇2
− ξ̇2

)

.

Equations (2)–(4) are solved provided the relations

∂W

∂φ
=

1

2m2
p
φ̇,

∂W

∂ξ
= −

1

2m2
p
ξ̇, (9)

V = 3m2
pW

2 + 2m4
p

(

(

∂W

∂φ

)2

−

(

∂W

∂ξ

)2
)

(10)

are satisfied (O. DeWolfe, D.Z. Freedman, S.S. Gubser, A. Karch,
Phys. Rev. D62 (2000) 046008, hep-th/9909134).
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4 MODEL WITH EXACT SOLUTIONS

Let us construct a potential, which corresponds to fields

φ(t) = tanh(t), and ξ(t) =

√

2(1 + b)

cosh(t)
≡

B

cosh(t)
. (11)

The functions φ(t) and ξ(t) are solutions of the system






φ̇ = b
(

φ2
− 1
)

+
1

2
ξ2,

ξ̇ = − φξ.
(12)

The corresponding superpotential and potential are given by

H(t) = W (φ, ξ) = −
φ

6m2
p

(

b
(

3 − φ2
)

−
3

2
ξ2
)

, (13)

V =
1

2

(

b
(

φ2
− 1
)

+
ξ2

2

)2

−
φ2ξ2

2
+

φ2
(

b
(

3 − φ2
)

−
3ξ2

2

)2

12m2
p

.
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Note that we have a freedom to choose the potential
does not changing solutions. The same functions φ(t),
ξ(t) (and consequently the Hubble parameter H(t))
can correspond to different potentials V (φ, ξ).

1. System (12) is not unique: the functions φ(t) and ξ(t) are
solutions of the following differential equations:

φ̇ = 1 − φ2, ξ̇ = ξ

√

1 −
ξ2

B2
. (14)

2. The solution is not violated if we add to the potential V a
function δV , which is such that δV , ∂(δV )/∂φ and ∂(δV )/∂ξ
are zero on the solution:

δV = A(ξ, φ)

[

φ2 +
1

B2
ξ2

− 1

]2

. (15)
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5 NEW SOLUTIONS

System






φ̇ = b
(

φ2
− 1
)

+
1

2
ξ2,

ξ̇ = − φξ,
(16)

has not only solutions (11).
The general solution is defined in quadratures.
In the case b = − 1/2 we can write it in the explicit form:

φ(t) =

(

(C2 + 4)et−t0 − e−(t−t0)
)

(C2 + 4)et−t0 + 2C + e−(t−t0)
,

ξ(t) =
4

(C2 + 4)et−t0 + 2C + e−(t−t0)
,

(17)

where C and t0 are arbitrary constant.
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For all values of C and t:

φ(±∞) = ±1, ξ(±∞) = 0. (18)

If

t0 =
1

2
ln(C2 + 4), (19)

then
φ(0) = 0. (20)

So, we have constructed the SFT inspired model with
two-parameter set of exact solutions, which satisfy
asymptotic and boundary conditions.
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In the case C = 0 we obtain two one-parameter sets of solutions

φ0(t) = tanh(t − tC), (21)

ξ0(t) = ±
1

cosh(t − tC)
. (22)
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Figure 1: φ and ξ (left), H (center) and wDE (right) at C = 0 and m2
p = 1/6.
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If C > 0 then the straightforward calculations give Ḣ(t) = 0 at
4 points. Two of these points are not real numbers. Other two
points are real if and only if C < 2.

H(t) is a monotonic function at C > 2 and has a maximum
and a minimum at 0 < C < 2.
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Figure 2: φ and ξ (left), H (center) and wDE (right) at C = 1 and m2
p = 1/6.
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To consider the case C < 0.
The corresponding Ḣ is equal to zero at 4 points: two points

are always real numbers, other two points are real at C < −2.
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Figure 3: φ and ξ (left), H (center) and wDE (right) at C = −5 and m2
p = 1/6.
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So, we have obtained the model with the polynomial potential:

V =
1

8

(

1−φ2 + ξ2
)2

−
1

2
φ2ξ2 +

φ2

36m2
p

((

3 − φ2
)

+3ξ2
)2

, (23)

which has a two-parameter set of exact solutions.
This set can separated into two subsets, one of which corre-

sponds to the quintessence large time behaviour, another one cor-
responds to the phantom large time behaviour.

The obtained solutions have one and the same asymptotic con-
ditions.

So, we can conclude that both quintessence and phantom large
time behaviors are possible to obtain from the SFT inspired ef-
fective model with the polynomial potential.
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6 CONCLUSIONS

We consider the model with a phantom scalar field

+ an ordinary scalar field and obtain:

• H(t) is not a monotonic function. The state para-
meter wDE crosses the barrier wDE = −1

• We have a freedom to choose the potential for the
given solutions.

• Using the superpotential method we generalize a
one-parameter solutions to two-parameter solutions.

• Both quintessence and phantom late time behav-
iors are possible to obtain from the SFT inspired
effective model with one and the same potential.
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