Neutrino telescopes in the deep sea

Vincenzo Flaminio

Physics Dept. & INFN-Pisa

v^{s} from space: the long march

Solar neutrinos \rightarrow Davis et al. 1955 – 1978

Observation of solar neutrinos confirmed later by

many experiments

Thanks to these measurements, the Standard Solar Model now on a solid basis

Later \rightarrow observation of v^s from SN1978a \rightarrow help clarify mechanism of SNs

High Energy Cosmic vs

- Understand production mechanism of HE cosmic rays
- Disantangle Synchrotron-Inverse Compton from Hadronic production in SNRs
- Study Binary systems, μQuasars
- Investigate the very high energy processes occurring in GRBs
- Search for Dark matter
- New probe → new observations

A flourishing literature on cosmic v sources

But not a single cosmic neutrino detected up to now !!! (Like flying squcers or Gravitational Waves)

PHYSICAL REVIEW D 72, 107301 (2005)

Note on high-energy neutrinos from active galactic nuclei cores

F. W. Stecker NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA (Received 20 October 2005; published 11 November 2005)

Potential Neutrino Signals from Galactic γ -Ray Sources

Alexander Kappes

 $\label{eq:constraint} Friedrich-Alexander-University\ Erlangen-Nuremberg,\ Germany$

The cumulative background of high energy neutrinos from starburst galaxies

Abraham Loeb^{1,2} and Eli Waxman³

TeV Neutrinos from SuperNova Remnants embedded in Giant Molecular Clouds

Vincenzo Cavasinni
1,2 $^{\dagger},~$ Dario Grasso^{2,3 $\ddagger,~$ Luca Maccione
2,4 \ast}

October 22, 2006

Detectable neutrino fluxes due to enhanced cosmic ray densities in the Galactic Centre region

> Julián Candia The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34014 Trieste, Italy E-mail: icandia@ietp.it

> > PHYSICAL REVIEW D 74, 063009 (2006)

High-energy neutrino yields from astrophysical sources: Weakly magnetized sources

M. Kachelrie β^1 and R. Tomàs²

PHYSICAL REVIEW D 74, 063007 (2006)

Guaranteed and prospective Galactic TeV neutrino sources

Matthew D. Kistler^{1,*} and John F. Beacom^{1,2,†}

PHYSICAL REVIEW D 73, 043004 (2006)

High energy neutrinos from cosmic ray interactions in clusters of galaxies

Daniel De Marco,* Patricia Hansen,[†] and Todor Stanev[‡]

Neutrino Telescopes

- Neutral particle
- \rightarrow points back to source (undeflected by B fields)
- Weak interaction
- \rightarrow no absorption

Tiny cross section

need huge detector

 ν_{μ} + N \rightarrow μ + hadrons μ measures ν direction

A little bit of history

Detection technique

M.Markov, **1960**:

We propose to install detectors deep in a lake or in the sea and to determine the direction of charged particles with the help of Cherenkov radiation

Atmospheric muon background

Experimental requirements

Large Depth

Darkness atm μ filter → big overburden Reduced bioluminescence

Neutrino detection principle

U, 🛛

interaction

3D PMT array

ĬŶč

Cherenkov light from μ

> 2500 m 43° depth

> > Measurement : Time & position of hits μ (~ ν) trajectory

Started in 1973 (Cosmic Ray Conference in Denver)

Initial motivation: anomalous cosmic-ray depthintensity curves obtained by Keuffels group in Utah (Result later disproven)

First measurements (Short Prototype String) published in 1990 atmospheric muon measurements at various depths: (2000-4000 m) in steps of 500m

All subsequent designs have taken advantage of the DUMAND experience

Short Prototype String

Dumand results

FIG. 6. Measured muon vertical intensity vs depth compared with other underwater experiments below 1000 m depth. The errors indicated are both systematic and statistical.

FIG. 7. Measured muon angular distribution at 4 km. The vertical error bars are just statistical.

μ vertical intensity vs depth

μ angular distribution at 4 km

Used a mere 17 hours of data to set the best limits (for a while) on high energy neutrinos from AGNs

Collaboration with Russian groups

A.E. Chudakov, V.S. Berezinsky, B.A. Dolgoshein, A.A. Petrukhin

Strong Russian commitment

BUT

Collaboration terminated by the Reagan administration, after the Soviet invasion of Afghanistan

²The severing of the Russian link was done with elegance and taste. We were told, confidentially, that while we were perfectly free to choose our collaborators as we liked, if perchance they included Russians it would be found that no funding was available for us.

A.Roberts; RMP 64, 1, 1992

In parallel \rightarrow Russian initiative at lake Baikal

• a broad plateau: 8×9 km² in area, 7.5 nautical miles from shore

- **depth**: ~4000m (→5200m)
- transmission length: $55 \pm 10m$ at λ =460 nm
- underwater currents: <10 cm/s measured over the last 10

years

• optical background: ~50 kHz/OM due to K⁴⁰ decay bioluminescence activity (1% of the experiment live time)

• sedimentology tests: flat clay surface on sea floor, good anchoring ground.

NESTOR \rightarrow first attempt in the Mediterranean

Avoid underwater connections \rightarrow no use of ROV

Implications: have to recover entire detector in case of repairs (not recommended after DUMAND experience) 32 m diameter floor (6 floors) 30 m between floors 144 15" PMTs

At the center of each floor a Ti sphere Houses the floor electronics

DUMAND Experience \rightarrow

"....if one is not going to make ocean bottom connections, then the whole array has to be installed of a piece, a frightening thought at the level of a km³ array....

ROVs are ever more available, being driven in development for the deep ocean at this time by the increasing depth of oil drilling operations."

"The DUMAND-II group chose to employ ROVs, so the deployment was greatly simplified from earlier plans. To our view this is the only sensible option for large arrays."

NESTOR: reconstructed event (Data taken in 2003)

Raw Data

Zenith Angle (degrees)

NEMO architecture

The Mini Tower for NEMO Phase-1

Mechanical stresses are applied only to the tensioning ropes

NEMO Phase-1 installation

December 16 2006 Connection of the tower to the JB

RICAP07, Rome, June 20-22 2007

NEMO-Phase 1

Phase-2 project

A deep sea station on the Capo Passero site

INFRASTRUCTURE UNDER CONSTRUCTION

- Shore station in Portopalo (Capo Passero)
- 100 km electro optical cable
- Underwater infrastructures

STATUS AND PLANS

- Electro-optical cable (>50 kW, 20 fibres)
- Cable deployed few weeks ago
- Power feeding system under construction, acceptance tests december 2007
- Installation of cable termination frame with DC/DC converter beginning 2008
- Renovation of the shore station building under way. Completion beginning 2008
- Tower deployment foreseen for mid 2008

ANTARES collaboration

ANTARES detector site & shore station

ROV connection of Line 1 on March 2006

Situation in April 2007

375 PMTs now in the DAQ stream

ANTARES now an operational Neutrino Telescope

Less background light

Mediterranean Sea, 43° N

Better angular resolution

ANTARES already biggest NT in Northern Hemisphere (Effective area very similar to AMANDA) Chance of major original discoveries

Line Alignment using tiltmeterscompasses + hydrophones

ANTARES online event display

ANTARES event reconstruction

Coincidence rates between adjacent PMTs

Km3Net

- Deep Sea Facility in the Mediterranean for
- Neutrino Astronomy and Associated Sciences
 Started February 2006

KM3NeT consortium

38 institutes from:

Cyprus, France, Germany, Greece, Ireland Italy, Malta, The Netherlands, Spain, UK

E. de Wolf, Nikhef/UvA

RICAP07, Rome, 22nd June 2007

KM3NeT DS objectives

- Effective volume ≥ 1 km³
- Angular resolution for muons: 0.1^o (for neutrino energies ≥ 10 TeV)
- Energy threshold: few 100 GeV (~100 GeV when pointing)
- Sensitivity to all neutrino flavours, CC/NC reactions
- Field of view: close to 4π for high energies

Targeted budget: M€220-250 (ESFRI roadmap)

E. de Wolf, Nikhef/UvA

KM3NeT Tasks

Task	Descriptive title					
WP1	Management of the					
	Design Study					
WP2	Physics analysis and					
	simulation					
WP3	System and product					
	engineering					
WP4	Information technology					
WP5	Shore and deep-sea					
	infrastructure					
WP6	Sea surface infrastructure					
WP7	Risk assessment and					
	quality assurance					
WP8	Resource exploration					
	A					
WP9	Associated science					

KM3NeT DS deliverables

 Conceptual Design Report: autumn 2007 (workshop in Amsterdam, November 2007)

Technical Design Report: spring 2009

a.o.

- Technical description of major parts
- QA/QC procedures
- Optimal site-detector combinations
- Inventory of resource opportunities

E. de Wolf, Nikhef/UvA

RICAP07, Rome, 22nd June 2007

Km3Net

Km3Net

Summary

- KM3NeT DS is well on its way
 - Building on experience of existing telescopes
 - CDR workshop in November 2007
- Waiting for a decision on FP7-PP proposal
 - Commitments for construction
 - Governance
 - Site selection
 - System prototype

E. de Wolf, Nikhef/UvA

RICAP07, Rome, 22nd June 2007

Conclusions

Long march towards underwater cosmic neutrino detection has undergone an acceleration

- ➢ Nestor → first serious attempt in the Medierranean → results published
- ANTARES made a major step forward during 2006-2007 and 12-lines detector with 900 OMs will be completed early 2008.
- NEMO → big effort towards capopassero site (3500 m) Construction of detector for NEMO PhaseI completed. Now in data-taking 100 km electro-optical cable for NEMO PhaseII installed and shore-station building almost ready
- Joint European effort towards km3 detector in the Mediterranean now underway (Km3Net)

Comparison among expts

Experiment	Connections	Power (cable)	Readout	Volume (m³)	E _{thres} (Muons)	#PMTs	λ_{abs}
Antares (12 strings)	ROV	42 km 4.5 kV (AC-50 Hz) +sea return	T,Q (Waveform: 200 MHz-1 GHz)	10 ⁷	50 GeV	900 (375 now)	
Baikal (NT200)	AIR	??	T,Q	10 ⁵	15 GeV	192	
Baikal (NT200+)	AIR	??	Waveform (200 MHz)	5x10 ⁶	15 GeV	228	
NEMO-II (64 Towers)	ROV	100 km 10 kV DC +sea return	Waveform (200 MHz)	~10 ⁹	100 GeV	5184	
NESTOR (1 Tower)	AIR	??		2.5x10 ⁵		144	

Junction Box

Effectiveness of the oil bath solution

- Solution applied for the JB and the electronics containers of the tower
- All power electronics under pressure in oil bath
- Importance of redundancies
 - All control channels in the JB duplicated
 - Minor failures on some control boards overcome via redundant path
- ... but ...
- Malfunctions due to accidental crash
 - Recovery of the JB (june 16 2007)
 - Now repaired and redeployed

NZMC E. Migneco

The Junction Box

Data transmission electronics Power distribution and control system Optical fibre splitters Innovative design to decouple the corrosion and pressure resistance problems

Electronics pressure vessels

1 m

External fibreglass container

NEMO-Phase 1

Δt distribution for two close PMTs

NEMO-Phase 1

Other modifications / upgrades of the Phase-2 tower

Full tower with 16 floors

- Equipped with the same electronics of Phase-1, but two floors reserved for testing of new electronics (LIRA), directional OMs, ...
- New DC power system to comply with the feeding system provided by Alcatel
- Optimization of the electronics and data transmission
 - Increase of the A/D conversion accuracy
 - Increase of the data bandtwidth
 - Decrease of the power consumption
- Integrate a new acoustic station

Expected performance (MC Studies)

- > Light scattering + chromatic dispersion in sea water: $\sigma \sim 1.0$ ns
- > TTS in photomultipliers: $\sigma \sim 1.3$ ns
- \geq Electronics + time calibration: σ < 0.5 ns
- > OM position reconstruction: σ < 10 cm [σ < 0.5 ns]

Acoustic triangulation of Line 1 hydrophone

Amanda vs ANTARES v Effective areas

