Lightest neutralino in the MNSSM

Roman Nevzorov

Glasgow University

in collaboration with S.Hesselbach, D.J.Miller, G.Moortgat-Pick and M.Trusov

13th Lomonosov Conference on Elementary Particle Physics, Moscow, August 2007 – p.1/15

Outline

Introduction

- Neutralino sector in the MNSSM
- Upper bound on the mass of the lightest neutralino
- Approximate solution for the lightest neutralino mass
- Conclusions

Introduction

- Recent observations indicate that 22% 25% of the energy density of the Universe exists in the form of stable non–baryonic, non–luminos (dark) matter.
- The existence of dark matter is the strongest piece of evidence for physics beyond the SM.
- In the MSSM the lightest SUSY particle (LSP) can play the role of dark matter.
- In most SUSY scenarios the LSP is the lightest neutralino.
- Since neutralinos are heavy weakly interacting particles they can
 - explain the large scale structure of the Universe;
 - provide the correct relic abundance of dark matter.

But MSSM being incorporated in supergravity or GUTs suffers from the μ problem. Indeed, in SUGRA models

 $W_{SUGRA} = W_0(h_m) + \mu(h_m)(\hat{H}_d\hat{H}_u) + h_t(h_m)(\hat{Q}\hat{H}_2)\hat{U}_R^c + \dots,$

where $\mu(h_m) \sim M_{Pl}$ or $\mu(h_m) = 0$.

The correct pattern of electroweak symmetry breaking requires

 $\mu(h_m) \sim 100 - 1000 \,\mathrm{GeV}$.

In the NMSSM the superpotential is invariant under Z_3 discrete symmetry, i.e.

$$\mu(\hat{H}_d\hat{H}_u) \to \lambda \hat{S}(\hat{H}_d\hat{H}_u) + \frac{\varkappa}{3}\hat{S}^3.$$

• At the EW scale field *S* acquires VEV inducing an effective μ term $\mu_{eff} = \lambda \langle S \rangle$.

13th Lomonosov Conference on Elementary Particle Physics, Moscow, August 2007 - p.4/15

- However VEVs of the Higgs fields break Z₃ symmetry resulting in the formation of domain walls which create unacceptably large CMB anisotropies.
- Non-renormalizable operators that break Z₃ symmetry give rise to quadratically divergent tadpole contributions destabilising the mass hierarchy.

A.Vilenkin, Phys.Rep. 121 (1985) 263; S.A.Abel, S.Sarkar, P.L.White, Nucl.Phys.B 454 (1995) 663.

• The Z_2^R or Z_5^R symmetries allow to suppress the potentially harmful operators.

C.Panagiotakopoulos, K.Tamvakis, Phys.Lett.B 446 (1999) 224;

C.Panagiotakopoulos, K.Tamvakis, Phys.Lett.B 469 (1999) 145.

High order operators do not affect mass hierarchy but prevent the appearance of domain walls.

13th Lomonosov Conference on Elementary Particle Physics, Moscow, August 2007 – p.5/15

Neutralino sector in the MNSSM

The superpotential of the corresponding simplest extension of the MSSM – Minimal Non–minimal Supersymmetric Standard Model (MNSSM) is

 $W_{MNSSM} = \lambda \hat{S}(\hat{H}_d \hat{H}_u) + \xi \,\hat{S} + W_{MSSM}(\mu = 0) \,.$

where $\xi \lesssim (\text{TeV})^2$.

C.Panagiotakopoulos, A. Pilaftsis, Phys. Rev. D **63** (2001) 055003; A.Dedes, C.Hugonie, S.Moretti, K.Tamvakis, Phys. Rev. D **63** (2001) 055009.

- High order operators which are not forbidden by Z^R₅ symmetry induce linear term
 \$\heta\$ \heta\$ in the superpotential that breaks Z₃ and Peccei—Quinn symmetries.
- The neutralino sector of the MNSSM is formed by the superpartners of the neutral gauge bosons (\tilde{W}_3, \tilde{B}) and neutral Higgsino fields $(\tilde{H}_d^0, \tilde{H}_u^0, \tilde{S})$.

13th Lomonosov Conference on Elementary Particle Physics, Moscow, August 2007 – p.6/15

In the field basis $(\tilde{B}, \tilde{W}_3, \tilde{H}_d^0, \tilde{H}_u^0, \tilde{S})$ the neutralino mass matrix takes a form

 $M_{\tilde{\chi}^{0}} = \begin{pmatrix} M_{1} & 0 & -M_{Z}s_{W}c_{\beta} & M_{Z}s_{W}s_{\beta} & 0 \\ 0 & M_{2} & M_{Z}c_{W}c_{\beta} & -M_{Z}c_{W}s_{\beta} & 0 \\ -M_{Z}s_{W}c_{\beta} & M_{Z}c_{W}c_{\beta} & 0 & -\mu_{eff} & -\frac{\lambda v}{\sqrt{2}}s_{\beta} \\ M_{Z}s_{W}s_{\beta} & -M_{Z}c_{W}s_{\beta} & -\mu_{eff} & 0 & -\frac{\lambda v}{\sqrt{2}}c_{\beta} \\ 0 & 0 & -\frac{\lambda v}{\sqrt{2}}s_{\beta} & -\frac{\lambda v}{\sqrt{2}}c_{\beta} & 0 \end{pmatrix},$ $s_W = \sin \theta_W, \quad c_W = \cos \theta_W, \quad s_\beta = \sin \beta, \quad c_\beta = \cos \beta, \quad \mu_{eff} = \frac{\lambda s}{\sqrt{2}},$ $\tan \beta = \frac{v_2}{v_1}, \quad \langle H_d \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} v_1 \\ 0 \end{pmatrix}, \quad \langle H_u \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_2 \end{pmatrix}, \quad \langle S \rangle = \frac{s}{\sqrt{2}}.$

13th Lomonosov Conference on Elementary Particle Physics, Moscow, August 2007 – p.7/15

The spectrum of neutralino is defined by \$\lambda\$, \$\mu_{eff}\$, \$\tan\beta\$, \$\mu_1\$, \$\mu_2\$. The direct chargino searches set limits on \$|M_2|\$, \$|\mu_{eff}| > 90 - 100 \text{ GeV}\$.

In SUSY GUT's one gets

$$M_2 = \frac{\alpha_2(M_Z)}{\alpha_1(M_Z)} M_1 \simeq 2 M_1.$$

The requirement of validity of perturbation theory up to the GUT scale constrains the allowed range of λ

$\lambda(M_Z) \lesssim 0.7$.

. When λ is small the non–observation of Higgs boson at LEP rules out low values of $\tan\beta \lesssim 2.5$.

13th Lomonosov Conference on Elementary Particle Physics, Moscow, August 2007 – p.8/15

Upper bound on the mass of χ_1^0

- In order to find theoretical bounds on the neutralino masses $m_{\chi_i^0}$ it is convenient to consider matrix $M_{\tilde{\chi}^0} M_{\tilde{\chi}^0}^{\dagger}$.
- The eigenvalues of $M_{\tilde{\chi}^0} M_{\tilde{\chi}^0}^{\dagger}$ are equal to $|m_{\chi_i^0}|^2$.
- In the basis $\left(\tilde{B}, \tilde{W}_3, -\tilde{H}_d^0 s_\beta + \tilde{H}_u^0 c_\beta, \tilde{H}_d^0 c_\beta + \tilde{H}_u^0 s_\beta, \tilde{S}\right)$ the bottom-right 2 × 2 block of $M_{\tilde{\chi}^0} M_{\tilde{\chi}^0}^{\dagger}$ takes a form

$$\begin{pmatrix} |\mu_{eff}|^2 + \sigma^2 & \nu^* \mu_{eff} \\ \nu \mu_{eff}^* & |\nu|^2 \end{pmatrix},$$
$$\sigma^2 = M_Z^2 \cos^2 2\beta + |\nu|^2 \sin^2 2\beta, \qquad \nu = \frac{\lambda \nu}{\sqrt{2}}$$

• Since the minimal eigenvalue of $M_{\tilde{\chi}^0} M_{\tilde{\chi}^0}^{\dagger}$ is less than its smallest diagonal element, $|m_{\chi_1^0}| \lesssim |\nu|$.

13th Lomonosov Conference on Elementary Particle Physics, Moscow, August 2007 – p.9/15

• The mass of the lightest neutralino must be also smaller than the minimal eigenvalue of bottom-right 2×2 submatrix of $M_{\tilde{\chi}^0} M_{\tilde{\chi}^0}^{\dagger}$, i.e.

$$|m_{\chi_1^0}|^2 \lesssim \frac{1}{2} \left[|\mu_{eff}|^2 + \sigma^2 + |\nu|^2 - \sqrt{\left(|\mu_{eff}|^2 + \sigma^2 + |\nu|^2 \right)^2 - 4|\nu|^2 \sigma^2} \right].$$

- The lightest neutralino mass vanish when $\lambda \to 0$.
- The upper bound on $m_{\chi^0_1}$ decreases when $|\mu_{eff}|$ grow and at large $|\mu_{eff}| >> M_Z$

$$|m_{\chi_{1}^{0}}|^{2} \lesssim \frac{|\nu|^{2}\sigma^{2}}{\left(|\mu_{eff}|^{2} + \sigma^{2} + |\nu|^{2}\right)}$$

• Taking into account the restrictions on μ_{eff} and $\lambda(M_Z)$ we find $|m_{\chi_1^0}|^2 < 0.8 M_Z^2 \Longrightarrow m_{\chi_1^0} \lesssim 80 - 85 \,\text{GeV}.$

13th Lomonosov Conference on Elementary Particle Physics, Moscow, August 2007 – p.10/15

Approximate solution for $m_{\chi^0_1}$

Neutralino masses obey characteristic equation

$$\det \left(M_{\tilde{\chi}^0} - \varkappa I \right) = \left(M_1 M_2 - (M_1 + M_2)\varkappa + \varkappa^2 \right) \left(\varkappa^3 - (\mu_{eff}^2 + \nu^2)\varkappa + \nu^2 \mu_{eff} \sin 2\beta \right) + M_Z^2 \left(\tilde{M} - \varkappa \right) \left(\varkappa^2 + \mu_{eff} \sin 2\beta\varkappa - \nu^2 \right) = 0,$$

where $\tilde{M} = M_1 c_W^2 + M_2 s_W^2$ and \varkappa is an eigenvalue of $M_{\tilde{\chi}^0}$.

Because in the MNSSM |m_{\chi_1^0}| is considerably smaller than |m_{\chi_2^0}| one can ignore \varkappa^3 , \varkappa^4 and \varkappa^5 terms in the characteristic equation so that it reduces to

$$\varkappa^2 - B\,\varkappa + C = 0\,.$$

• Then the approximate solution for $m_{\chi_1^0}$ can be written as $|m_{\chi_1^0}| = \operatorname{Min}\left\{\frac{1}{2}\left|B - \sqrt{B^2 - 4C}\right|, \frac{1}{2}\left|B + \sqrt{B^2 - 4C}\right|\right\}.$

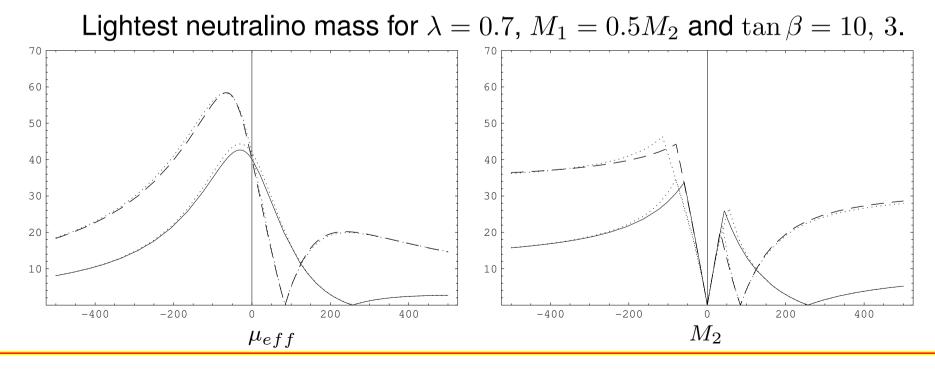
13th Lomonosov Conference on Elementary Particle Physics, Moscow, August 2007 – p.11/15

• B and C are given by

$$B = \frac{M_1 M_2}{M_1 + M_2} + \left(\frac{\nu^2}{\mu_{eff}^2 + \nu^2} - \frac{M_Z^2}{\mu_{eff}^2 + \nu^2} \frac{\tilde{M}}{M_1 + M_2}\right) \mu_{eff} \sin 2\beta$$

$$- \frac{M_Z^2 \nu^2}{(M_1 + M_2)(\mu_{eff}^2 + \nu^2)},$$

$$C = \frac{\nu^2}{\mu_{eff}^2 + \nu^2} \left(\frac{M_1 M_2}{M_1 + M_2} \mu_{eff} \sin 2\beta - \frac{\tilde{M}}{M_1 + M_2} M_Z^2\right).$$



13th Lomonosov Conference on Elementary Particle Physics, Moscow, August 2007 – p.12/15

When $|m_{\chi_1^0}|$ is close to its maximum value the lightest neutralino is basically formed by \tilde{B} and \tilde{S} .

35 30 25 20 15 10 5

Lightest neutralino mass for $\lambda = 0.7$, $M_1 = 0.5 M_2$, $M_2 = \mu_{eff}$

13th Lomonosov Conference on Elementary Particle Physics, Moscow, August 2007 – p.13/15

 $10 \tan \beta^{12.5}$

15

17.5

20

0

2.5

5

7.5

- When $|m_{\chi_1^0}|$ is considerably less than M_Z the lightest neutralino is predominantly singlino.
- If either μ_{eff} or $M_{1,2} \gg M_Z$ then

$$|m_{\chi_1^0}| \simeq \frac{|\mu_{eff}|\nu^2 \sin 2\beta}{\mu_{eff}^2 + \nu^2}.$$

- The lightest neutralino mass decreases with raising of μ_{eff} and $\tan \beta$.
- Since the correct EW symmetry breaking requires $\mu_{eff} = const$ when $\lambda \to 0$ the lightest neutralino mass is proportional to λ^2 at small values of λ .
- At very large $\tan \beta$

$$|m_{\chi_1^0}| \to \frac{\nu^2 M_Z^2}{\mu^2 + \nu^2} \left| \frac{\tilde{M}}{M_1 M_2} \right|$$

• The lightest neutralino mass reduces when M_1 and M_2 grow.

13th Lomonosov Conference on Elementary Particle Physics, Moscow, August 2007 – p.14/15

Conclusions

- We have argued that in contrast with the MSSM the allowed range of the mass of the lightest neutralino in the MNSSM is limited.
- In the allowed part of the parameter space the lightest neutralino mass does not exceed 80 85 GeV.
- We have found the approximate solution for the lightest neutralino mass.
 - At large values of μ -term $m_{\chi_1^0}$ is inversely proportional to μ_{eff} .
 - $|m_{\chi_1^0}|$ vanishes in the limit when $\lambda \to 0$.
 - $|m_{\chi_1^0}|$ decreases with raising of $\tan\beta$, M_1 , and M_2 .
- In the allowed part of the parameter space the lightest neutralino is predominantly singlino that makes rather difficult its observation at future colliders.