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Scalar and spinor particles with low binding energy in a strong stationary magnetic field 
in two and three dimensions

We discuss

)(rδ

Equations for the bound one-active electron states based on 
analytic solutions of the Schrödinger and Pauli equations for an 
uniform magnetic field and single attractive             potential

Electron ground states in a magnetic field differ essentially from 
the analogous state of spin-0 particles

We show
1. The binding energy equations can be obtained without using the boundary 
conditions in the       potential modelδ

We calculate the energy level displacement analytically and 
demonstrate nonlinear dependence on the field intensity

2. The magnetic field indeed plays a stabilizing role in considered systems in the 
case of weak intensity, but a strong magnetic field acts in the opposite way

These properties may be important for real quantum mechanical 
fermionic systems in two and three dimensions



I. FORMULATION OF THE PROBLEM

Our main purpose is  to derive equations for the binding energy of fermion 
in a field containing an attractive singular potential and a stationary 
external magnetic field in the two- and three-dimensional cases.

δ-potential approximation:                                        Energy level displacements can be seen for a 
• Multielectronic atom field                          particle in a δ-potential and a magnetic field
• Negative ion field
• Field of nuclear forces

2+1 dimensions                     axially symmetric quantum systems of electrically
charged fermions: the quantum Hall effect

high temperature superconductivity
various film defects  

3+1 dimensions                      real quantum mechanical fermionic systems: 
multielectronic atoms, ions

QM method: the expansion of the unknown wave function in a series at the 
eigenfunctions obtained in the pure magnetic field (differs in principle from the 
traditional derivation of wave functions using the boundary condition typical for the δ-
potential ) 



II. A scalar particle in an attractive potential in the presence of a 
uniform magnetic field
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The Hamiltonian is 

e and m are the charge and the mass of the particle.

Consider a charge in a uniform magnetic field B specified as 
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The particle wave function in this field has the form
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is the electron energy spectrum, ./ mceB=ω

The functions )(YUn are expressed in terms of the Hermit polynomials,
the integer n=0,1, 2,.. indicates the Landau level number. 



Simple solvable model Scalar particle in the three dimensional case 
in a single attractive δ-potential in the presence 
of a uniform magnetic field

The corresponding Schrödinger equation is
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The solution has the form
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zx pnpψwhere is the spatial part of wave function, E’= - |E’| is the required negative energy.

The coefficients can be easily calculated and we obtain the equation
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where

This equation implicitly defines the energy of a bound localized electron state in the magnetic 
field  and can be analytically reduced to a simpler form using representation
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We obtain the real expression
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If we eliminate the magnetic field, the equation takes the form
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is the absolute value of the binding energy without the action of the external field

Subtracting equations and removing the integral divergences, we obtain

∫
∞ −

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=−

0
2/30 ,1

)sinh(2
dx

ax
ax

x
eEEE

x

π E
a

2
ω

=

This equation is consistent with the 
analogous equation  obtained  by well-known 
method using boundary conditions of wave 

functions in the δ-potential model

Yu.N.Demkov, G.F.Drukarev (1965)
V.S. Popov, B.M. Karnakov, V.D. Mur (1998)
V.N.Rodionov, G.A.Kravtsova, A.M.Mandel (2002)
V.N.Rodionov, A.M.Mandel, E.V.Arbuzova (2005)
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02E>ωThe explicit equation for the bound-state energy in the strong-field limit
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The restriction to the binding-energy spectrum 
of the scalar particle in the magnetic field is

In the super-strong magnetic field 

ω205.0'=E The upper limit for the binding energy 
of a scalar particle

2
' ω
<E

This limiting value is independent of the particle energy 
In the absence of the field and is completely determined
by the magnetic field intensity
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Expanding the integrand function in the weak field limit ,2 0E〈〈ω we get



The two-dimensional model
The analogue of the equation
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In the weak field limit
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In the strong-field limit 02E>ω the expression which explicitly determines the 
bound state energy is
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For  the super-strong magnetic field 1)/ln( 0 >>Eω we obtain
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This expansion is correct for the binding energy 2/' ω≤E

Difference from three-dimensional case: for super-strong magnetic field the upper
limit of the shifted binding-energy level in the considered model tends directly 
to the boundary of the continuous spectrum 



III. A spin particle in an attractive potential 
in the presence of a uniform magnetic field
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To study spin effects in magnetic fields we can use the same approach based on exact 
solutions of the Pauli equation with the Hamiltonian

where mce 2/=μ is the Bohr magneton,

3σ is the z component of the Pauli matrices 

Interaction of the electron spin 
magnetic moment with the magnetic filed

The electron wave functions in the field
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The solution of Schrödinger equation
In the magnetic field 

The electron energy spectrum
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1±=s is the conserved spin 
quantum number 

Continuous spectrum boundaries

2/' ω≥E ω≥'E 0'≥E

Scalar particle
Spin along the 
magnetic field

s=+1

Spin against the 
magnetic field

s=-1



The energy equation in the 
three dimensional case ∫
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The expansion in the weak field limit 2
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The energy level 
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In the δ-potential 
without perturbation

shifted under the 
magnetic field action
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The depth of the arrangement of energy levels with respect to the continuous spectrum
boundaries is the same in these two cases and in the case of spin-0 particles 

In the strong field limit                    for different spin values 1,1,0 −+=s
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The dependence of energy level shifts on the particle spin does not disappear in the 
strong field limit:  The continuous spectrum boundaries are shifted for s=0, s=1.

The displacements of the binding energy levels are at the same distances from 
the continuous spectrum boundaries in all cases

0E>ω



The two-dimensional model
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According to our approach

1±=s represents the particle spin direction

In the weak field limit 2
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The strong field limit 1)/ln( 0 〉〉Eω

For s=-1
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For the opposite spin orientation s=1 we obtain
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The main difference from the three-dimensional case: the perturbative binding-energy
levels converge to the continuous spectrum boundaries in a super strong magnetic field

gives



IV. Conclusions

The effect of a magnetic field on localized electron states leads to equations for 
The binding energy of spin-0 and spin-1/2 particles

In the weak field limit the energy displacements of scalar and spinor
particles are described by the expressions
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2=δ Three-dimensional case 

1=δ Two-dimensional case 

The dependence on the particle spin does not disappear in the strong field limit 0E〉〉ω
Three-dimensional case: the perturbative energy levels approach specific 

spectral values determined by the magnetic field 
intensity

The displacements of the binding energy levels are at identical distances from the 
continuous spectrum boundaries
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The strong field limit

Three-dimensional case

0E〉〉ω

The value of the binding
energy level is positive 

Two-dimensional case  
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The energy levels in the basic 
terms are independent of the 
particle energy in the absence 
of the magnetic field

For super strong magnetic field
1)/ln( 0 〉〉Eω

the binding energy levels approach
the continuous spectrum boundaries
for all spin values 



Summary
The energy levels of a polarized electron under the action of a weak magnetic field
for different particle spin values are shifted similarly in the three-dimensional and 
two-dimensional models.

There are the line displacements as the levels themselves for s=1 and s=-1 and
analogous shifts of the continuous spectrum boundaries for s=1. 

There is the same picture in the case of a spinless particle with the line shift of the
continuous spectrum boundary.

In case of weak intensity a magnetic field indeed plays a stabilizing role in the 
considered systems because the depth of the perturbative binding energy levels
from the continuous spectrum boundaries are shifted downward under the field 
action independently of the particle spin.

1.

2. Our results show a nonlinear dependence on the field intensity in the strong-field
limit. 

The continuous spectrum boundaries in the cases s=0 and s=1, as before, have a 
linear dependence on the field in this limit.

In super strong magnetic fields, the binding energy levels can approach the
continuous spectrum boundaries.



3. The distinctions can be formulated as follows:

In the three-dimensional model, there is a fixed depth of the energy levels from 
the continuous spectrum boundaries that is the same for all spin values.

In the two-dimensional model, the energy levels in a super strong magnetic field 
tends asymptotically to the continuous spectrum boundaries. 

In the both cases, the system instability increases in strong magnetic fields.

This conclusion disproves the opinion that a magnetic field always plays a 
stabilizing role in systems of bound particles.!
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