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Phase transitions in dense quark matter

Chiral symmetry breaking (χSB) — quark condensate
< q̄q >6= 0 (low baryon density and low temperature)

Color superconductivity (CSC) — diquark condensate
< qq >6= 0 (high baryon density and low temperature)

As diquark condensate < qq > appears in the color anti-triplet
channel, the color symmetry SUc(3) should be spontaneously
broken inside the CSC phase.
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Motivation

We study the influence of strong gravitational field on phase
transitions in dense quark matter with quark and diquark
condensates.

We also study the influence of finite temperature and
chemical potential on the phase transitions.

We use the effective Nambu-Jona-Losinio - type model.
To study the influence of gravity we take the static Einstein
Universe.
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The extended NJL model in curved space-time

The extended Nambu–Jona-Lasinio model with two flavors of
quarks:

L = q̄
[
iγµ∇µ + µγ0

]
q +

G1

2Nc

[
(q̄q)2 +

(
q̄iγ5~τq

)2
]

+

+
G2

Nc

[
i q̄cεε

bγ5q
] [

i q̄εεbγ5qc

]
, (1)

where µ is the quark chemical potential.
The Lagrangian is invariant under the chiral SU(2)L × SU(2)R and
color SUc(3) groups. This model may be considered as low energy
limit of QCD.
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Bosonization procedure

Bosonization procedure leads to the linearized version of the model:

L̃ = q̄
[
iγµ∇µ + µγ0

]
q − q̄

(
σ + iγ5~τ~π

)
q − 3

2G1
(σ2 + ~π2)−

− 3

G2
∆∗b∆b −∆∗b

[
i q̄tCεεbγ5q

]
−∆∗b

[
i q̄εεbγ5Cq̄t

]
. (2)

The Lagrangians (1) and (2) are equivalent on equations of motion:

∆b = −G2

3
iqtCεεbγ5q, σ = −G1

3
q̄q, ~π = −G1

3
q̄iγ5~τq.
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Collective boson fields:

σ and ~π — color singlets.

∆b — color anti-triplet.

Symmetry breaking:

If 〈σ〉 6= 0 → chiral symmetry is dynamically broken.

If 〈∆b〉 6= 0 → the color and electromagnetic symmetries are
broken.
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Effective action

The effective action for boson fields:

iSeff(σ, ~π,∆b,∆∗b) = ln

∫
[dq][dq̄] exp

{
i

∫
dDx

√
−g L̃

}
=

= −Nc

∫
dDx

√
−g

[
σ2 + ~π2

2G1
+

∆b∆∗b

G2

]
+ S̃q, (3)

where S̃q is a quark contribution.
The mean field approximation:

σ = −G1

3
〈q̄q〉, ~π = −G1

3
〈q̄iγ5~τq〉, ∆b = −G2

3
〈iqtCεεbγ5q〉.
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The ground state

We may choose the ground state of our model in the simplest form:

〈∆1〉 = 〈∆2〉 = 〈~π〉 = 0

〈σ〉 6= 0 〈∆3〉 6= 0

Evidently, this choice breaks color symmetry to the residual color
group SUc(2).
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Effective potential

The effective potential:

Veff ≡ − Seff∫
dDx

√
−g

=
3σ2

2G1
+

3∆b∆∗b

G2
+ Ṽ , (4)

where

Ṽ = − S̃q

v
, v =

∫
dDx

√
−g .

Performing the integration over quark fields one can obtain the
quark contribution to the effective action:

i S̃q(σ,∆) = ln det
[
(i∇̂ − σ + µγ0)

]
+

+ ln det1/2
[
4|∆|2 + (−i∇̂ − σ + µγ0)(i∇̂ − σ + µγ0)

]
.
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Static Einstein Universe

The line element in the static D-dimensional Einstein Universe:

ds2 = dt2 − a2(dθ2 + sin2 θdΩD−2), (5)

where a is radius of the Universe. The global topology is R⊗SD−1.
The scalar curvature:

R =
(D − 1)(D − 2)

a2
. (6)

The volume of the Universe:

V (a) =
2πD/2aD−1

Γ(D
2 )

. (7)
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Evaluation of determinants in the static Einstein Universe

One may introduce the Hamiltonian operators for massive and
massless particles:

Ĥ = ~α~̂p + σγ0,

Ĥ = ~α~̂p, (8)

where αk = γ0γk , and (p̂)k = −i∇k , k = 1 . . .D − 1.
The quark contribution to the effective action:

2i S̃q(σ,∆) = ln det
[
Ĥ2−(p̂0−µ)2

]
+ln det

[
4|∆|2 + (Ĥ − µ)2 − p̂2

0

]
.

(9)
The second operator has the energy gap |∆| in the spectrum,
which leads to the color superconductivity.
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The eigenvalues in the static Einstein Universe

The eigenvalues of Hamiltonian operators:

Ĥ ψn = ±ωnψn, ωn = 1
a

(
n + D−1

2

)
, n = 0, 1, 2 . . .

Ĥψn = ±Enψn, En =
√
ω2

n + σ2.
(10)

The degeneracies of ωn and En are equal to

dn =
2[(D+1)/2]Γ(D + n − 1)

n!Γ(D − 1)
, (11)

where [x ] is the integer part of x .
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Thermodynamic potential and gap equations

The effective potential at finite temperature or thermodynamic
potential (TDP):

Ωeff(σ,∆) = Nc

(
σ2

2G1
+ |∆|2

G2

)
−

−Nf
V (Nc − 2)

∞∑
n=0

dn

{
En + T ln

(
1 + e−β(En±µ)

)}
−

−Nf
V

∞∑
n=0

dn

{√
(En ± µ)2 + 4|∆|2 + 2T ln

(
1 + e−β

√
(En±µ)2+4|∆|2

) }
.

(12)
The global minimum point of TDP is determined from the gap
equations:

∂Ωeff

∂|∆|
= 0,

∂Ωeff

∂σ
= 0.

that define values of condensates 〈σ〉 and 〈∆3〉.
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Regularization

The TDP is divergent at high energy (large n). Soft cutoff:
exp (−ωn/Λ). In flat space-time Λ can be determined from the
pion mass or the pion decay constant. In curved space-time we
have no such experiments. Qualitative discussion. To obtain the
dimensionless TDP we divide all quantities by an appropriate
power of the cutoff parameter:

Ωreg(σ,∆) = Nc

(
σ2

2G1
+ |∆|2

G2

)
−

−Nf
V (Nc − 2)

∞∑
n=0

e−ωndn

{
En + T ln

(
1 + e−β(En±µ)

)}
−

−Nf
V

∞∑
n=0

e−ωndn

{√
(En ± µ)2 + 4|∆|2+

+2T ln
(
1 + e−β

√
(En±µ)2+4|∆|2

) }
.
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Phase transitions

We will use numerical calculations to find the global minimum of
regularized TDP

Ωreg(σ,∆)− Ωreg(0, 0).

We fix the constant G2 as in flat space-time:

G2 =
3

8
G1.

We also choose the coupling constant G1 in such a way that the
chiral and/or color symmetries were completely broken: G1 = 10
(strong coupling). Consider the case D = 4.

A. V. Tyukov Color superconductivity in the static Einstein Universe



Introduction
The extended NJL model
Thermodynamic potential

Phase transitions
Summary

Zero temperature

The behavior of the condensates (σ0,∆0) at the global minimum
point as a functions of µ at R = 3 and T = 0, for G1 = 10:
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Figure: Condensates σ0 and ∆0 as functions of µ for R = 3, G1 = 10 (all
quantities are given in units of Λ).

When the chemical potential exceeds the critical value µc , the
chiral symmetry is restored while the color symmetry is broken.
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Fermion number density n = −∂Ωreg/∂µ at zero temperature.
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Figure: The fermion number density at R=3, T=0, G1 = 10.

Since the first derivative of thermodynamic potential is
discontinuous chemical potential leads to the first order phase
transition.
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Phase portrait at T=0:
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Figure: The phase portrait at T=0 for G1 = 10. Dotted (solid) lines
denote first (second) order phase transitions. The bold point denotes a
tricritical point. The numbers 1,2 and 3 designate the symmetric, chiral
symmetry breaking and superconducting phases, respectively.
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As in flat space-time there is no mixed phase where both
condensates are nonzero.

One can see oscillations of the phase curve. Possible
explanation: discreteness of the fermion energy levels in the
compact space (similar effect in the magnetic field H, where
fermion Landau levels are also discrete (van Alphen-de Haas
magnetic oscillations)).
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Phase portraits at finite temperature

The growing temperature leads to the restoration of the chiral and
color symmetries. The similarity of R − µ and µ− T plots:
Curvature R and temperature T play similar roles in restoring the
symmetries.
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Figure: The phase portraits at T=0.35 (left) and at R=3 (right).
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Summary

In the framework of the NJL model we have derived a
nonperturbative expression for the effective potential of the
theory in the mean field approximation.

The influence of gravity was exactly taken into account in the
case of the static Einstein Universe.

The influence of the chemical potential and temperature on
the phase transitions was studied.

The oscillation effect of the phase curves was found, which
may be explained by discreteness of the fermion energy levels
in the compact space.
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