Lattice results on gluon and ghost propagators in Landau gauge

V. Bornyakov IHEP, Protvino

XIII Lomonosov conference 28.08.07

Outline

- 1 Motivation
- ² Main Problems, Present Situation
- 3 New Results
- 4 Conclusions

Motivation

- Kugo-Ojima confinement criterion Kugo, Ojima, '78 absence of colored physical states \implies ghost propagator more singular than simple pole at $p^2 = 0$
- Gribov-Zwanziger confinement scenario

Gribov '78, Zwanziger '91

gauge fields within the Gribov region

 $\Omega = \{A_{\mu}(x): \partial_{\mu}A_{\mu} = 0, \ M_{FP} \equiv -\partial D(A) \geq 0\}$

are accumulated at the Gribov horizon $\partial \Omega$ \implies for $p^2 \rightarrow 0 \ G(p^2) \rightarrow \infty, \ D(p^2) \rightarrow 0$

- Comparison with other methods, e.g. Dyson-Schwinger Equations (DSE)

Motivation

- Kugo-Ojima confinement criterion Kugo, Ojima, '78 absence of colored physical states \implies ghost propagator more singular than simple pole at $p^2 = 0$
- Gribov-Zwanziger confinement scenario

Gribov '78, Zwanziger '91

gauge fields within the Gribov region

 $\Omega = \{A_{\mu}(x) : \partial_{\mu}A_{\mu} = 0, \ M_{FP} \equiv -\partial D(A) \ge 0\}$

are accumulated at the Gribov horizon $\partial \Omega$ \implies for $p^2 \rightarrow 0 \ G(p^2) \rightarrow \infty, \ D(p^2) \rightarrow 0$

– Comparison with other methods, e.g. Dyson-Schwinger Equations (DSE)

Motivation

- Kugo-Ojima confinement criterion Kugo, Ojima, '78 absence of colored physical states \implies ghost propagator more singular than simple pole at $p^2 = 0$
- Gribov-Zwanziger confinement scenario

Gribov '78, Zwanziger '91

gauge fields within the Gribov region

 $\Omega = \{A_{\mu}(x) : \partial_{\mu}A_{\mu} = 0, \ M_{FP} \equiv -\partial D(A) \ge 0\}$

are accumulated at the Gribov horizon $\partial \Omega$ \implies for $p^2 \rightarrow 0$ $G(p^2) \rightarrow \infty$, $D(p^2) \rightarrow 0$

- Comparison with other methods, e.g. Dyson-Schwinger Equations (DSE)

Questions to lattice QCD

- Do propagators show predicted infrared behavior ?
- Are formulated confinement criteria valid?
- What is the influence of Gribov copies on the propagators ? Large volume limit?
- Infrared limit of the running coupling $\alpha_s(p^2)$?

Main Problems, Present Situation

- Gribov problem: Existence of several gauge copies inside Ω What are the right copies ? Restriction to fundamental modular region Λ required? Zwanziger, '04: $\langle O \rangle_{\Omega} = \langle O \rangle_{\Lambda}$ This is to be checked in lattice computations
- Finite volume problem
 - minimal available moment

 $p_{min} = 2\pi/L$, where L - lattice size

▶ propagators at p_{min} are not correct, i.e. real p_{min} is larger than $2\pi/L$

Few definitions :

gluon propagator

$$egin{aligned} D^{ab}_{\mu
u}(p) &= \langle A^a_\mu(p) A^b_
u(-p)
angle &= \left(\delta_{\mu
u} - rac{p_\mu}{p^2} rac{p_
u}{p^2}
ight) \delta^{ab} D(p^2) \ &Z(p^2) &\equiv p^2 D(p^2) \end{aligned}$$

ghost propagator

$$egin{aligned} \langle c(p)ar{c}(-p)
angle &= G(p^2)\ &J(p^2) &\equiv p^2G(p^2) \end{aligned}$$

Sternbeck et al. '06 $\,$

Lattice vs. DSE (Gluon propagator)

DSE: $D(p^2) \propto (p^2)^{\kappa_D - 1}, \ \kappa_D \approx 1.19$

Lattice vs. DSE (Ghost propagator)

DSE: $G(p^2) \propto (p^2)^{-\kappa_G - 1}, \ \kappa_G = \kappa_D / 2 \approx 0.595$

New Results

Bogolubsky, VB, Burgio, Ilgenfritz, Mitryushkin, Müller-Preussker, '07 In SU(N) gluodynamics the transformation, $Z \in Z_N$

 $U_{\mu}(..., \mathbf{x}_{\mu}, ...) \longrightarrow Z U_{\mu}(..., \mathbf{x}_{\mu}, ...), \quad \mathbf{x}_{\mu} - \text{fixed}$ (1)

is equivalent to nonperiodic gauge transformation:

$$g(x+L\hat{\mu}) = Z g(x) \tag{2}$$

Gauge field configurations space is decomposed into N^4 sectors connected by such nonperiodic gauge transformations

<u>Old procedure</u>: all sectors are treated separately (N^4 gauge orbits) New procedure: sectors are combined, i.e. one gauge copy

Additionally: few Gribov copies were generated for each sector and the best one was chosen

New Results

New procedure, lattice size up to 6.7 fm

New Results

New procedure vs. old procedure

Ghost dressing function

Conclusions

- Gribov copies effects are very strong in the infrared region for both gluon and ghost propagators
- New procedure, combining N^4 gauge orbits into one gauge orbit, substantially reduces finite volume effects \implies for given L minimal accesible momenta are decreased by factor ~ 1.5
- For gluon propagator turning point is observed for the first time, thus agreement with DSE prediction becomes better. Needs further confirmation
- Lattice ghost propagator deviates from DSE prediction as before