THERMAL EFFECTS IN HEAVY-ION COLLISIONS G.I.Lykasov, A.N.Sissakian, A.S.Sorin, V.D.Toneev Joint Institute for Nuclear Research, Dubna

CONTENTS

- I. Motivation to study in-medium effects for hadron production in A-A collisions
 - II. NICA/MPD project at JINR (Dubna)
 - III. Thermal effects and quark distributions
 - IV. Broadening for quark distributions
 - V. Hadron production and Quark-Gluon-String Model (QGSM)
- VI. Broadening for transverse mass spectra of hadrons in A-A collisions
- VII. Comparison to experimental data and other models
- VIII. Summary

- Searching for the QGP and Mixed Phase (MP)
- $J/\Psi(c\bar{c})$ suppression measured in Pb-Pb collisions at the SPS energies

In the context of a phase transition to the QGP charmonium states $c\bar{c}$ should no longer be formed due to color screening H.Satz, Rep.Prog.Phys. 63 (2000) 1511

 Open charm enhancement observed by NA50 Collaboration in Pb-Pb collsions at 160 (GeV/A)

It can be due to the QGP creation in the center rapidity region

- Elliptic flow for high p_t particles
- Cronin effect for p_t -spectra
- Broadening of transverse mass spectra observed at SPS, RHIC energies

NICA/MPD	project at	JINR	(Dubna)
----------	------------	-------------	---------

Conceptional project

Design and construction of Nuclotron-based Ion Collider Facility (NICA) and Multiple-Purpose Detector (MPD)

NICA goals and physics problems

The first stage

- 1. Multiplicity and global characteristics of identified hadrons including multi-strange particles
 - 2. Fluctuations in multiplicity and transverse momenta
 - 3. Direct and elliptic flows for various hadrons
 - 4. Interference and particle correlations

The second stage

1. Electromagnetic probes (photons and dileptons)

Local equilibrium of hadrons

$$f_h^{HE} = C_T^{HE} \left\{ 1 \pm exp((\epsilon_h - \mu_h)/T) \right\}^{-1}$$
,

where + is for fermions and - is for bosons, ϵ_h and μ_h are the kinetic energy and the chemical potential of hadron h respectively, T is the temperature, C_T^{HE} is the normalization coefficient depending on T.

Quark distribution

$$f_q^{HE}(x, \mathbf{p}_t; T) = \int_0^1 dx_1 \int_0^1 dx_2 \int d^2p_{1t} d^2p_{2t} f_h^{HP}(x_1, p_{1t}) \times f_q^h(x_2, p_{2t}) \delta((x - x_1 x_2) \delta^{(2)}(\mathbf{p}_t - \mathbf{p}_{1t} - \mathbf{p}_{2t})$$

Factorized form for $f_q^h(x, p_t)$

$$f_q^h(x, p_t) = f_q(x)g_q(p_t) ,$$

Broadening for quark distributions

We assume

$$g_q(p_t) = \frac{\gamma_q}{\pi} exp(-\gamma_q p_t^2)$$
.

Then we get

$$f_q^{HE}(x \simeq 0, p_t) = f_q^h(x \simeq 0) \frac{\gamma_q}{\pi (1 + 2\gamma_q m_h T)} (1 + \frac{T}{m_h}) exp(-\frac{\gamma_q p_t^2}{1 + 2\gamma_q m_h T})$$
.

At non zero x

$$f_q^{HE}(x, p_t) \simeq \frac{\gamma_q}{\pi} \frac{f_q^h(x)}{1 + 2\gamma_q \tilde{m}_h^s(x_1) T} (1 + \frac{T}{\tilde{m}_h^s(x_1)}) exp(-\frac{\gamma_q p_t^2}{1 + 2\gamma_q \tilde{m}_h^s(x_1) T}) ,$$

Finally we have broadening

$$< p_t^2 >_q^{HE} = < p_t^2 >_q^h + 2m_h T$$

MQGS graphs

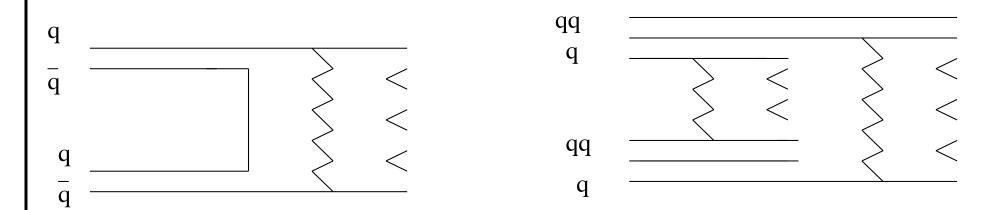


Figure 1: The planar graph (left diagram) and the cylinder graph (right diagram) *G.Veneziano*, *Phys.Lett.*, *B52*,220 (1974)

Inclusive hadron spectrum

$$\rho_{h_1}^{HE}(x, p_t) = F_q^{h_1}(x_+, p_t) F_{\bar{q}}^{h_1}(x_-, p_t) ,$$

Broadening for transverse mass spectra

where

$$F_q^{h_1}(x_{\pm}, p_t) = \int_{x_{\pm}}^1 dx_1 \int f_q^{HE}(x_1, p_{1t}) D_q^{h_1}(\frac{x_{\pm}}{x_1}), p_{2t}) \delta^{(2)}(p_{1t} + p_{2t} - p_t) d^2p_{1t} d^2p_{2t} ,$$

Here
$$x_{\pm} = \frac{1}{2}(\sqrt{x_t^2 + x^2} \pm x)$$
 and $x_t = 2m_{h_1t}/\sqrt{s_{NN}}, \ m_{h_1t} = \sqrt{m_{h_1}^2 + p_{1t}^2}$.

p_t -spectrum

$$\rho_{h_1}^{HE}(x \simeq 0, p_t) \simeq f_q^h(x \simeq 0) \frac{\gamma_q \gamma_c}{\gamma_T + \gamma_c} \frac{1}{\pi} (1 + \frac{T}{m_q}) exp(-p_t^2 \frac{\gamma_T \gamma_c}{\gamma_T + \gamma_c}) ,$$

where $\gamma_c=2\tilde{\gamma}_c$ and $\tilde{\gamma}_c$ is the slope of the exponential p_t^2 -dependence for $D_q^{h_1}$, $\gamma_T=\gamma_q/(1+2m_hT\gamma_c)$ and $\bar{\gamma}_T=1/(2m_qT)$.

Finally we have similar broadening for hadron p_t -spectrum

$$< p_t^2 >_{h_1}^{HE} \simeq < p_t^2 >_{h_1}^{pp} + 2m_h T$$

A simple exponential approximation of p_t -spectra for produced hadrons h_1

is usually utilized to parametrize experimental data :

$$\frac{dN}{dm_{h_1t}^2 dy}|_{y=0} = Cexp(-\frac{m_{h_1t}}{T^*})$$

where the parameter T^* is extracted form fitting the data. There are experimental data on the T^* values for different hadron masses and different m_t domains - "low p_t " when $m_{h_1t}-m_{h_1} < 0.6 \ GeV$ and "high p_t ", $0.6 < m_{h_1t}-m_{h_1} < 1.6 \ GeV$

At low p_t

$$\frac{dN}{dm_t^2 dy}|_{y=0} \simeq Cexp(-\frac{m_{h_1}}{T^*})exp(-\frac{p_{h_1t}^2}{2m_{h_1}T^*})$$

The experimental measurements at the SPS energies show that $T^* \simeq 200-250 MeV$ for $K^\pm,\phi,\Omega,\Lambda$ hadrons at low p_t . It is close to our estimation for $< p_{h_1t}^2 >$ inputting T = 110-120 MeV that corresponds to the phase transition to the mixed phase in central A-A collisions at $\sqrt{s}/A = 5-10 GeV$ and $< p_{h_1t}^2 > \simeq 120-140 (MeV/c)^2$.

SUMMARY

- I. Assuming a local equilibrium for colorless quark objects of type mesons and baryons created in central A-A collision we got distributions of quarks in these clusters depending on x, p_t and temperature T.
- II. There is broadening effect over the transverse momentum p_t . Namely, $< p_t^2 >_q^{HE} = < p_t^2 >_q^h + 2m_hT$
- III. We estimated the transverse mass spectrum of hadrons produced in central A-A collisions from interaction of these colorless clusters.
- IV. This estimation within the QGSM resulted in also some broadening for the transverse momentum square of produced hadrons which is the same as the broadening effect for quark distributions
- V. The obtained results do not contradict to the existing experimental data obtained at SPS energies on the transverse mass spectra of hadrons in central A-A collisions at low p_t .