13th Lomonosov Conference on Elementary Particle Physics August 23-29, 2007, Moscow State University

Polarized parton densities and higher twist corrections in the light of the recent CLAS and COMPASS data

E. Leader (London), A. Sidorov (Dubna), D. Stamenov (Sofia)

OUTLINE

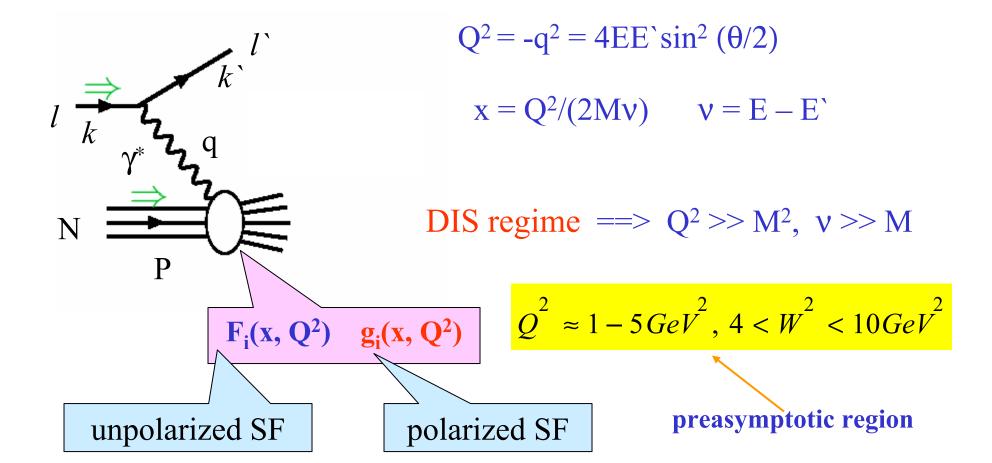
- Method of analysis higher twist corrections are taken into account
- Two new sets of very precise data are included in the analysis
 - low Q² CLAS data
 - COMPASS data mainly at large Q²

- Impact of the new data on LSS'05 polarized PD and HT
- The sign of the gluon polarization
- Summary

Inclusive DIS

one of the best tools to study

the structure of **nucleon**



As in the unpolarized case the main goal is:

- to test QCD
- to extract from the DIS data the **polarized** PD

$$\Delta q(x,Q^{2}) = q_{+}(x,Q^{2}) - q_{-}(x,Q^{2})$$

$$\Delta \overline{q}(x,Q^{2}) = \overline{q}_{+}(x,Q^{2}) - \overline{q}_{-}(x,Q^{2})$$

$$\Delta G(x,Q^{2}) = G_{+}(x,Q^{2}) - G_{-}(x,Q^{2})$$

where "+" and "-" denote the helicity of the parton, along or opposite to the helicity of the parent nucleon, respectively.

The knowledge of the polarized PD will help us:

- to make predictions for other processes like polarized hadron-hadron reactions, etc.
- more generally, to answer the question how the helicity of the nucleon is divided up among its constituents:

$$S_z = 1/2 = 1/2 \Delta\Sigma(Q^2) + \Delta G(Q^2) + L_z(Q^2)$$

$$\Delta \Sigma = \Delta u + \Delta \overline{u} + \Delta d + \Delta \overline{d} + \Delta s + \Delta \overline{s}$$

the parton polarizations Δq_a and ΔG are the first moments

$$\Delta q_a(Q^2) = \int_0^1 dx \Delta q_a(x, Q^2) \Delta G(Q^2) = \int_0^1 dx \Delta G(x, Q^2)$$

of the helicity densities: $\Delta u(x,Q^2), \Delta u(x,Q^2), \dots, \Delta G(x,Q^2)$

DIS Cross Section Asymmetries

Measured quantities

$$A_{\parallel} = rac{d \sigma^{\downarrow \uparrow \uparrow} - d \sigma^{\uparrow \uparrow \uparrow}}{d \sigma^{\downarrow \uparrow \uparrow} + d \sigma^{\uparrow \uparrow \uparrow}}, \qquad A_{\perp} = rac{d \sigma^{\downarrow \Rightarrow} - d \sigma^{\uparrow \Rightarrow}}{d \sigma^{\downarrow \Rightarrow} + d \sigma^{\uparrow \Rightarrow}}$$

$$A_{\perp} = \frac{d\sigma^{\downarrow \Rightarrow} - d\sigma^{\uparrow \Rightarrow}}{d\sigma^{\downarrow \Rightarrow} + d\sigma^{\uparrow \Rightarrow}}$$

$$(A_{\scriptscriptstyle \parallel},A_{\scriptscriptstyle \perp}) \Rightarrow (A_{\scriptscriptstyle 1},A_{\scriptscriptstyle 2}) \Rightarrow (g_{\scriptscriptstyle 1},g_{\scriptscriptstyle 2})$$

where A_1 , A_2 are the virtual photon-nucleon asymmetries.

At present, A_{\parallel} is much better measured than A_{\perp}

If A_{\parallel} and A_{\perp} are measured

$$\Rightarrow g_1/F_1$$

If only A_{\parallel} is measured

$$\Rightarrow \frac{A_{\parallel}^{N}}{D} \approx (1 + \gamma^{2}) \frac{g_{1}}{F_{1}}$$

$$\gamma^2 = 4M_N^2 x^2 / Q^2$$
 - kinematic factor

NB. γ cannot be neglected in the SLAC, **HERMES** and **JLab** kinematic regions

Theory

$$g_1(x,Q^2) = g_1(x,Q^2)_{LT} + g_1(x,Q^2)_{HT}$$

$$g_1(x,Q^2)_{LT} = g_1(x,Q^2)_{pQCD} + \frac{M^2}{Q^2} h^{TMC}(x,Q^2) + O(\frac{M^4}{Q^4})$$

$$g_1(x,Q^2)_{HT} = h(x,Q^2)/Q^2 + O(\frac{\Lambda^4}{Q^4})$$

dynamical HT power corrections ($\tau = 3,4$)

=> non-perturbative effects (model dependent)

target mass corrections which are calculable *A. Piccione, G. Ridolfi*

In NLO pQCD

$$g_{1}(x,Q^{2})_{pQCD} = \frac{1}{2} \sum_{q}^{N_{f}} e_{q}^{2} \left[(\Delta q + \Delta \overline{q}) \otimes (1 + \frac{\alpha_{s}(Q^{2})}{2\pi} \delta C_{q}) + \frac{\alpha_{s}(Q^{2})}{2\pi} \Delta G \otimes \frac{\delta C_{G}}{N_{f}} \right]$$

 δC_q , δC_G – Wilson coefficient functions

polarized PD evolve in Q²

according to NLO DGLAP eqs.

 N_f (=3) - the number of flavors

- An important difference between the kinematic regions of the unpolarized and polarized data sets
- A lot of the present data are at moderate Q^2 and W^2 :

$$Q^2 \approx 1 - 5 \, GeV^2$$
, $4 < W^2 < 10 \, GeV^2$

preasymptotic region

While in the determination of the PD in the unpolarized case we can cut the low Q² and W² data in order to eliminate the less known non-perturbative HT effects, it is impossible to perform such a procedure for the present data on the spin-dependent structure functions without loosing too much information.

$$O(\Lambda^2/Q^2)$$

HT corrections have to be accounted for in polarized DIS!

Method of analysis

$$\begin{bmatrix} g_1(x,Q^2) \\ F_1(x,Q^2) \end{bmatrix}_{\text{exp}} \stackrel{\chi^2}{\iff} g_1(x,Q^2)_{\text{LT}} + h^{g_1}(x)/Q^2 \\ F_1(x,Q^2)_{\text{exp}} \qquad \qquad \text{in model independent way}$$

Input PD
$$\Delta f_i(x, Q_0^2) = A_i x^{\alpha_i} f_i^{MRST}(x, Q_0^2)$$
 $Q_0^2 = 1 \text{ GeV}^2, A_i, \alpha_i - \text{ free par.}$

 $h^{p}(x_{i}), h^{n}(x_{i}) - 10$ parameters (i = 1, 2, ... 5) to be determined from a fit to the data

8-2(SR) = 6 par. associated with PD; positivity bounds imposed by MRST'02 unpol. PD

$$a_3 = g_4 = (\Delta u + \Delta \overline{u})(Q^2) - (\Delta d + \Delta \overline{d})(Q^2) = F - D = 1.2670 \pm 0.0035$$

$$a_8 = (\Delta u + \Delta \overline{u})(Q^2) + (\Delta d + \Delta \overline{d})(Q^2) - 2(\Delta s + \Delta \overline{s})(Q^2) = 3F - D = 0.585 \pm 0.025$$

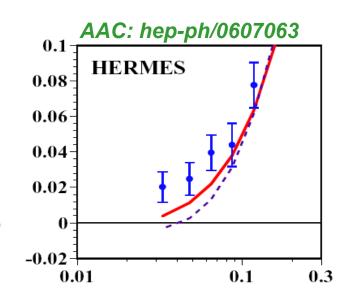
Flavor symmetric sea convention: $\Delta u_{sea} = \Delta u = \Delta d_{sea} = \Delta d = \Delta s = \Delta s$

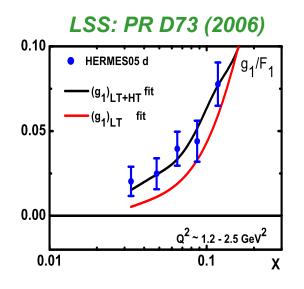
Higher twist effects

(CLAS'06 and COMPASS'06 not included)

$$g_1 = (g_1)_{LT} + h^{g_1}(x)/Q^2$$

- The low x and low Q² (1.2 ~ 2.5 GeV²)
 HERMES/d data can not be
 described by the LT (logarithmic
 in Q²) term in g₁ => red curves
- Excellent agreement with the data if the HT corrections to g₁ are taken into account in the analysis





CERN EMC -
$$A_1^p$$
 SMC - A_1^p , A_1^d COMPASS'05 - A_1^d

DESY HERMES -
$$\frac{g_1^p}{F_1^p}$$
, $\frac{g_1^d}{F_1^d}$

SLAC E142, E154 -
$$A_1^n$$
 E143, E155 - $\frac{g_1^p}{F_1^p}$, $\frac{g_1^a}{F_1^d}$

JLab Hall A -
$$\frac{g_1^n}{F_1^n}$$

$$A_1^N \approx (1+\gamma^2) \frac{g_1^N}{F_1^N}$$
 $\gamma^2 = 4M^2x^2/Q^2$ - kinematic factor

Number of exp. points: 190

LSS'05 polarized PD and HT (PR D73, 2006)

DATA

CERN EMC -
$$A_1^p$$
 SMC - A_1^p , A_1^d COMPASS'05 - A_1^d

DESY HERMES -
$$\frac{g_1^p}{F_1^p}$$
, $\frac{g_1^d}{F_1^d}$

SLAC E142, E154 -
$$A_1^n$$
 E143, E155 - $\frac{g_1^p}{F_1^p}$, $\frac{g_1^d}{F_1^d}$

JLab Hall A -
$$\frac{g_1^n}{F_1^n}$$
 CLAS'06 - $\frac{g_1^p}{F_1^p}$, $\frac{g_1^d}{F_1^d}$

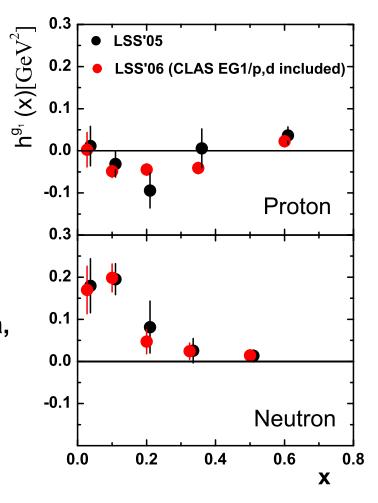
$$A_1^N \approx (1+\gamma^2) \frac{g_1^N}{F_1^N}$$
 $\gamma^2 = 4M^2x^2/Q^2$ - kinematic factor

Number of exp. points: $190 \implies 823$

Effect of CLAS'06 p and d data (PL B641, 11, 2006) on polarized PD and HT

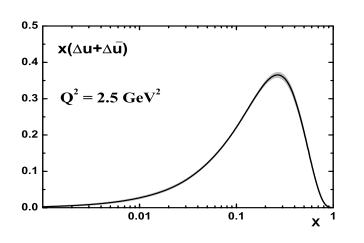
- Very accurate data on g₁^p and g₁^d
 at low Q²: 1~ 4 GeV² for x ~ 0.1 0.6
- The determination of HT/p and HT/n is significantly improved in the CLAS x region compared to HT(LSS'05)
- As expected, the central values of PPD are practically not affected by CLAS data, but the accuracy of its determination is essentially improved (a consequence of much better determination of HT corrections to g₁)

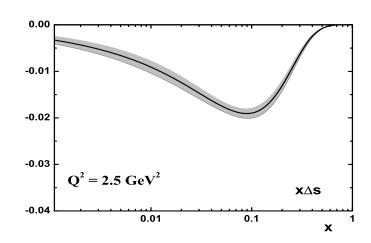
LSS'05: PR D73 (2006)

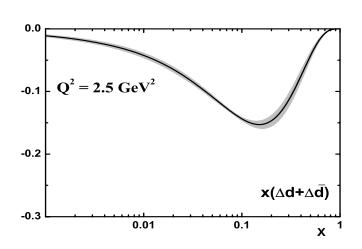


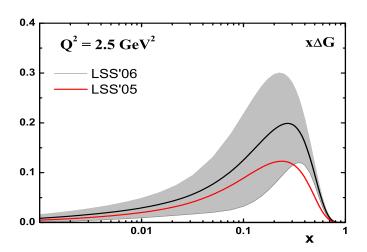
LSS'06 NLO(MS) polarized PDFs

The quark densities (central values) are identical with those of LSS'05.

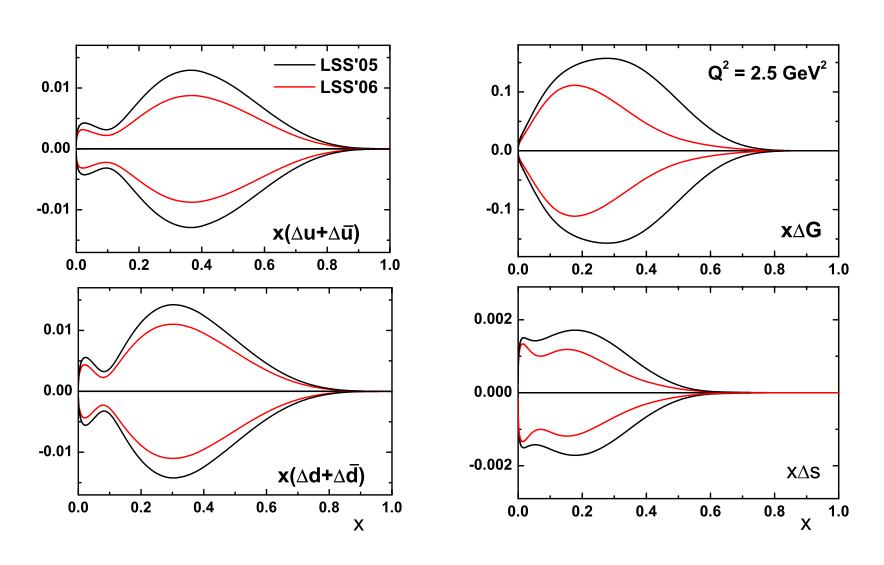








Impact of CLAS'06 data on the uncertainties for NLO polarized PD



The first moments of higher twist

Thanks to the very precise CLAS data the first moments of HT corrections are now much better determined.

$$\overline{h}^N = \int_{0.0045}^{0.75} dx \ h^N(x), \quad N = p, n$$

$$\overline{h}^p = (-0.014 \pm 0.005) \, GeV^2$$
 $\overline{h}^n = (0.037 \pm 0.008) \, GeV^2$

$$\overline{h}^n = (0.037 \pm 0.008) \, GeV^2$$

$$\overline{h}^p - \overline{h}^n = (-0.051 \pm 0.009) \, GeV^2$$
 $\overline{h}^p + \overline{h}^n = (0.023 \pm 0.009) \, GeV^2$

$$\overline{h}^p + \overline{h}^n = (0.023 \pm 0.009) \, GeV^2$$

- $\frac{\overline{h}^p \overline{h}^n}{h} < 0$ \leftarrow In agreement with the instanton model predictions and sum rules in QCD
- $\overline{h}^p + \overline{h}^n < |\overline{h}^p \overline{h}^n| \leftarrow \text{In agreement with } 1/N_c \text{ expansion in}$ QCD (Balla et al., NP B510, 327, 1998)

The main message from this analysis It is impossible to describe the very precise CLAS data if the HT corrections are

NOT taken into account

NOTE: If the low Q^2 data are not too accurate, it would be possible to describe them using only the leading twist term (logarithmic in Q^2) of g_1 , *i.e.* to mimic the power in Q^2 dependence of g_1 with a logarithmic one (using different forms for the input PDFs and/or more free parameters associated with them) which was done in the analyses of another groups before the CLAS data have appeared.

DATA

CERN EMC -
$$A_1^p$$
 SMC - A_1^p , A_1^d COMPASS'06 - A_1^d

DESY HERMES -
$$\frac{g_1^p}{F_1^p}$$
, $\frac{g_1^d}{F_1^d}$

SLAC E142, E154 -
$$A_1^n$$
 E143, E155 - $\frac{g_1^p}{F_1^p}$, $\frac{g_1^d}{F_1^d}$

JLab Hall A -
$$\frac{g_1^n}{F_1^n}$$
 CLAS'06 - $\frac{g_1^p}{F_1^p}$, $\frac{g_1^d}{F_1^d}$

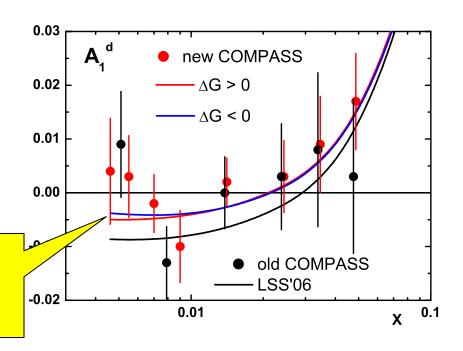
$$A_1^N \approx (1+\gamma^2) \frac{g_1^N}{F_1^N}$$
 $\gamma^2 = 4M^2x^2/Q^2$ - kinematic factor

Number of exp. points: 823 \implies 826

Effect of COMPASS'06 A_1^a data (hep-ex/0609038) on polarized PD and HT

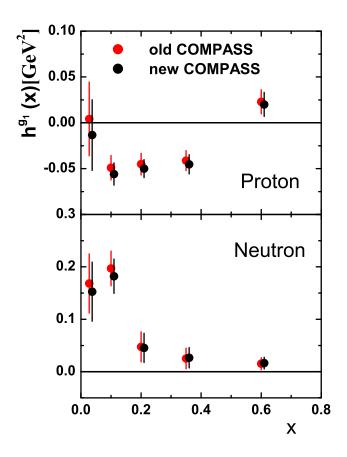
In contrast to the *CLAS* data, the *COMPASS* data are mainly at large Q^2 and the only precise data at small x: 0.004 < x < 0.02. The new data are based on 2.5 times larger statistics than those of *COMPASS'05*

The new QCD curves corresponding to the best fits lie above the old one at x < 0.1

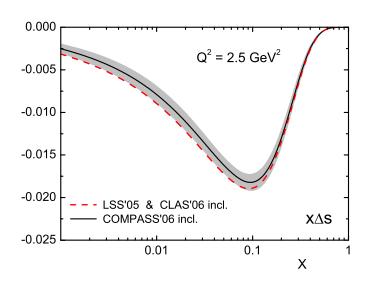


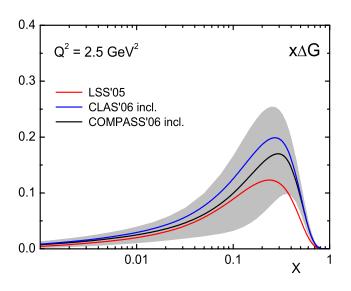
- $(\Delta u + \Delta \overline{u})$, $(\Delta d + \Delta \overline{d})$ do NOT change
- $x|\Delta s(x)|$ and $x\Delta G(x)$ and their first moments Δs and ΔG slightly decrease

5 x-bins for HT

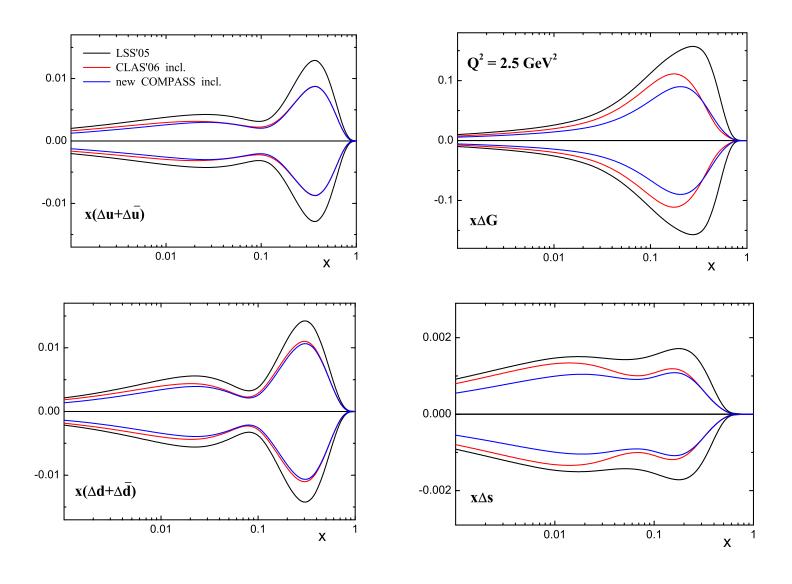


The values of HT are practically NOT affected by *COMPASS* data excepting the small x where Q² are also small





Impact of C0MPASS'06 data on the uncertainties for NLO polarized PD



$$Q^2 = 1 \text{ GeV}^2$$

COMPASS	Δs	ΔG	$\mathbf{a}_0 = \Delta \Sigma_{\mathrm{MS}}$
old	-0.070 ± 0.007	0.296 ± 0.197	0.164 ± 0.048
new	-0.063 ± 0.005	0.237 ± 0.153	0.207 ± 0.039

Spin of the proton

$$S_z = 1/2 = 1/2 \Delta\Sigma(Q^2) + \Delta G(Q^2) + L_q(Q^2) + L_g(Q^2)$$
$$= 0.34 + -0.16 + L_q(Q^2) + L_g(Q^2)$$

The big uncertainty is coming from gluons

To be determined from forward extrapolations of generalized PD

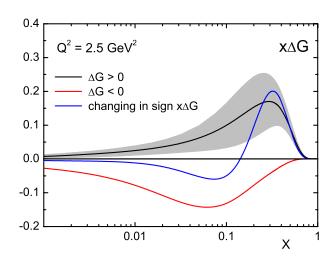
The sign of gluon polarization

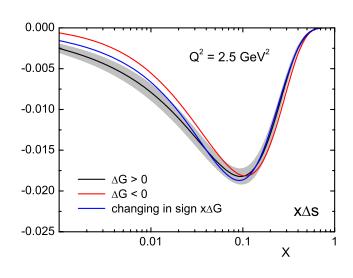
 The present inclusive DIS data cannot rule out the solutions with negative and changing in sign gluon polarizations

$$\chi_{DF}^{2}(\Delta G > 0) = 0.892$$

 $\chi_{DF}^{2}(\Delta G < 0) = 0.895, \chi_{DF}^{2}(x\Delta G / chsign) = 0.888$

- The shape of the negative gluon density differs from that of positive one
- In all the cases the magnitude of ΔG is small: $|\Delta G| \le 0.4$ at $Q^2 = 1 \text{ GeV}^2$
- The corresponding polarized quark densities are very close to each other





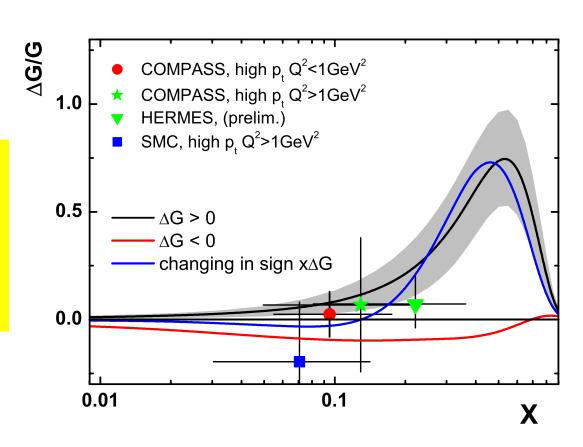
Comparison with directly measured $\Delta G/G$ at $Q^2 = 3 \text{ GeV}^2$

MRST'02 unpolarized gluon density is used for G(x)

The error band corresponds to statistic and systematic errors of $\Delta \mathbf{G}$

The error bars of the experimental points represent the total errors

The most precise value of ∆G/G, the *COMPASS* one, is well consistent with any of the polarized gluon densities determined in our analysis



SUMMARY

- The low Q² CLAS data improve essentially our knowledge of higher twist corrections to g₁ structure function
- The central values of polarized PD are NOT affected, but the accuracy of its determination is essentially improved
- The COMPASS data (mainly at large Q²) influence $|\Delta s|$ and ΔG which slightly decrease, but practically do NOT change HT
 - Strong support of the QCD framework
- Large (40%) contribution of HT to $(g_1)^d$ at small x (low Q^2)
- The present inclusive DIS data cannot rule out the negative and changing in sign gluon densities
- Good agreement with the directly measured $\Delta G/G$

OPEN QUESTIONS

- To constrain better $\Delta G \implies \text{directly from } COMPASS, RHIC;$ more precise experiments on g_1^d JLab Hall C
- Δu , Δd \Longrightarrow from SIDIS (*COMPASS*, *JLab*) and $A_L(W^{+(-)})$ at *RHIC*
- L_q (from generalized PD HERMES, COMPASS, JLab) and L_g ?
- a_8 ≠ 3F D = 0.585 ? (how much $SU(3)_f$ is broken) \rightarrow NA48 at CERN
- HT corrections in SIDIS, $O(\Lambda^4/Q^4)$ term in HT expansion in Bjorken x-space

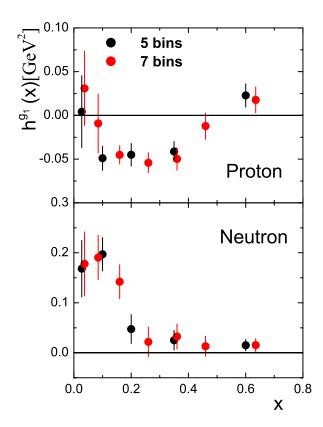
...etc.

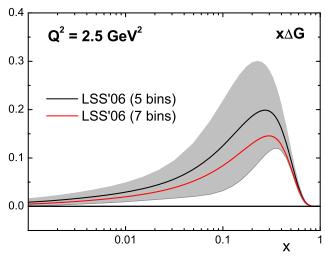
Additional slides

Due to the good accuracy of the CLAS data, one can split the measured x region of the world+CLAS data set into 7 bins instead of 5, and to determine more precisely the x-dependence of HT

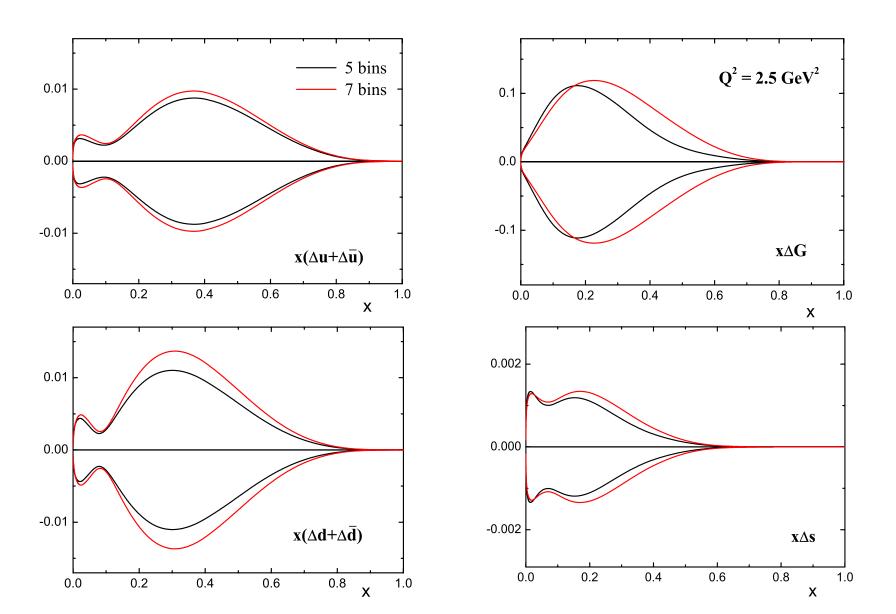
 The corresponding PPD are practically identical with those of LSS'06 (5 bins)

The only exception is x∆G, but it lies within the error band of x∆G (5 bins)
 small correlation between gluons and HT



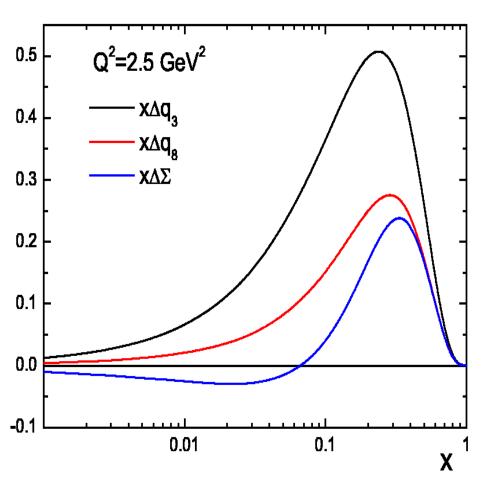


5 → 7 x-bins Impact on the uncertainties for NLO polarized PDFs



Why deuteron best for $\Delta G(x)$?

$$g_1^{p(n)}(x,Q^2) = \frac{1}{9} [(\pm \frac{3}{4} \Delta q_3 + \frac{1}{4} \Delta q_8 + \Delta \Sigma) \otimes (1 + \frac{\alpha_s(Q^2)}{2\pi} \delta C_q) + \frac{\alpha_s(Q^2)}{2\pi} \Delta G \otimes \delta C_G]$$



- The Δq_3 terms from p and n about twice size of Δq_8 and $\Delta \Sigma$ terms, cancel in deuteron.
- Relative gluon contributions largest in deuteron: relevant because experimental errors dominated by systematic scale factors.

LSS'06 vs COMPASS'06

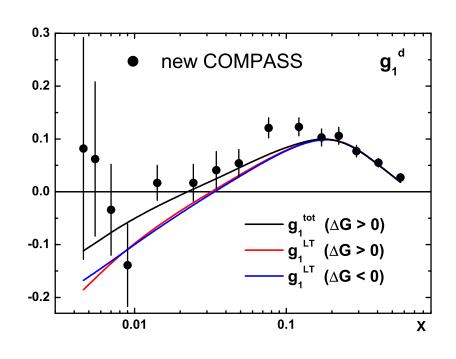
• At small x: 0.004 - 0.02 ($Q^2 \sim 1-3$ GeV²) our results differ from those of *COMPASS*

- $COMPASS \rightarrow significant difference$ between $(g_1)_{th}$ corresponding to the best fits for $\Delta G > 0$ and $\Delta G < 0$
- LSS'06 → the theoretical curves for both cases are very close to each other
- The reason → HT effects (40% at small x) which are NOT taken into account by COMPASS

$$(g_1)_{exp} \leftrightarrow$$

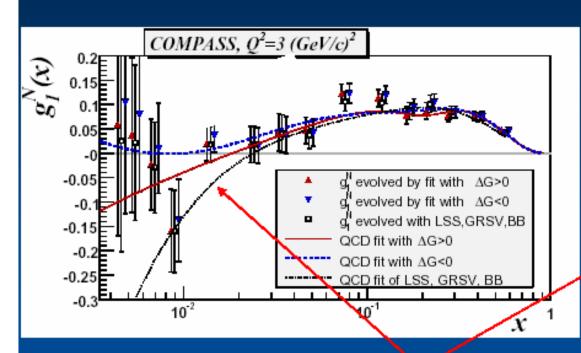
$$(g_1)_{LT}(COMPASS) \approx$$

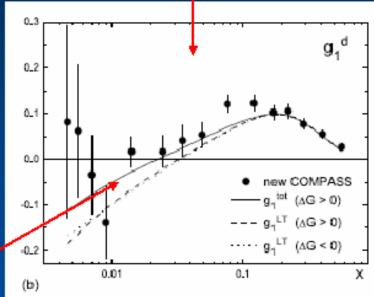
$$(g_1)_{LT}(LSS) + h^d(x)/Q^2$$



QCD analysis of the world data on structure function g₁

Comparison of data and fits - LSS06 (hep-ph/0612360

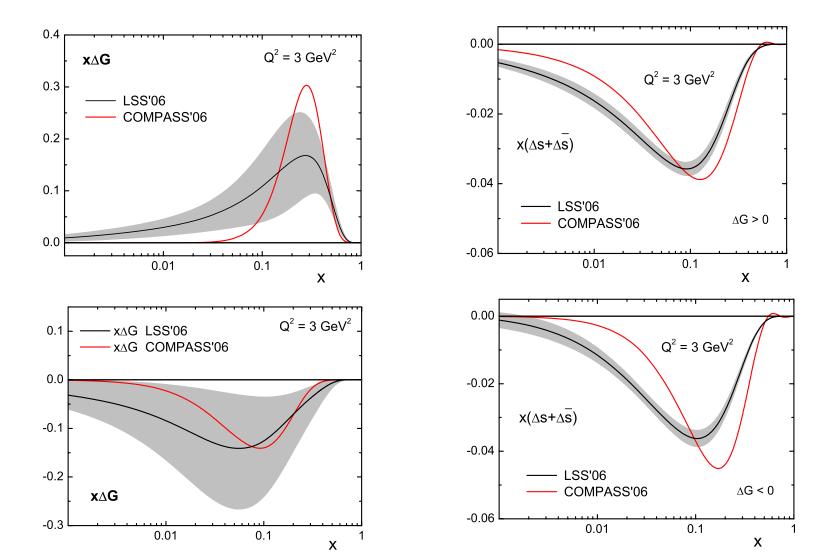




LSS05 vs LSS06

• $x\Delta s$ are different, especially in the case of $\Delta G < 0$

xAG positive obtaned by COMPASS is more peaked than our



Constraint on ΔG from π^0 production at RHIC (AAC, hep-ph/0612037)

$$\overrightarrow{p} + \overrightarrow{p} \rightarrow \pi^0 + X$$

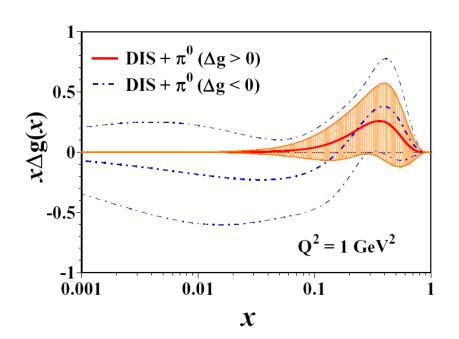
From DIS + π^0 analysis:

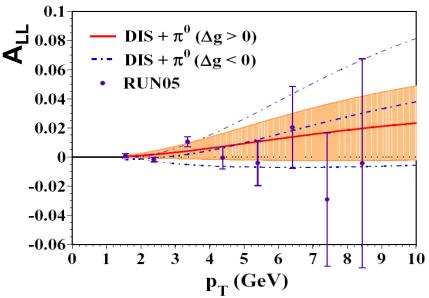
$$\Delta G = 0.31 \pm 0.32$$

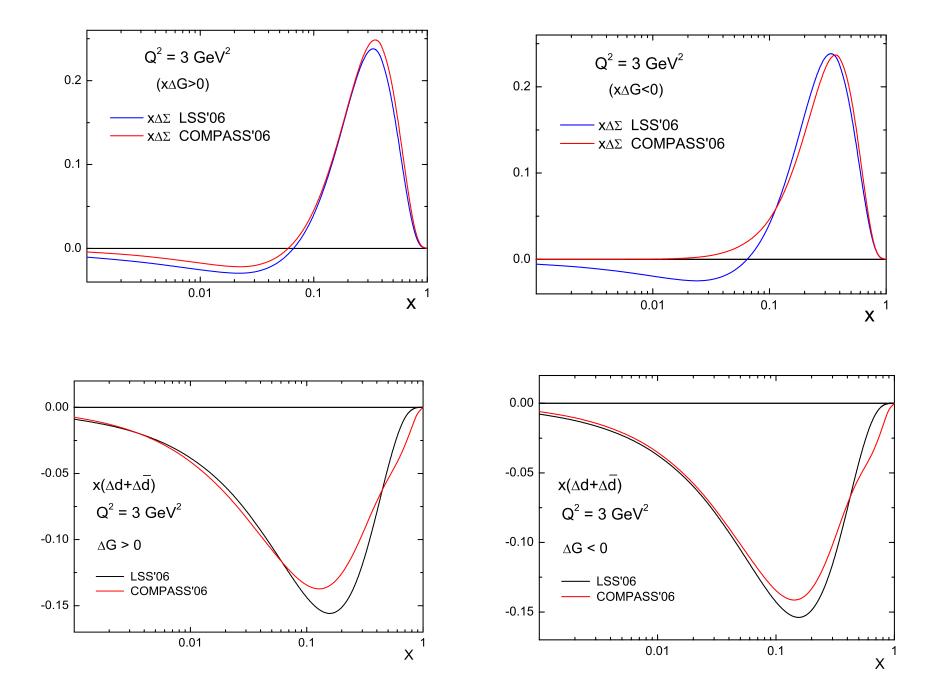
$$\Delta G = -0.56 \pm 2.16$$

$$(Q^2 = 1 \text{ GeV}^2)$$

Note: In contrast to LSS changing in sign $x\Delta G$, which for $Q^2 > 6$ GeV² is positive for any x, $x\Delta G_{AAC}$ becomes negative for large x too with increasing of Q^2 .







The expected uncertainties for NLO(MS) polarized PDFs including the CLAS12 "data" set

