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Electric strings

Wilson loop,
lattice calculations

[G.S. Bali, Ch. Schlichter and
K. Schilling, (1995) ]

Wilson loop,
“theory”

< W (C) >=
1
Z

∑
δS=C

eAE(S)

∝ e−σSmin

the sum is over electric strings.
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Electric strings

How to get area low from the sum over the surfaces?

Why the sum over S converges while the entropy of
surfaces in 4D is very large?

Why the minimal area enters the answer?

Why the phenomenology of ADS/QCD (5D string +
classical limit) is successful?
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Electric strings

It is possible to get the exact formulae:

Wilson loop:

< W (C) >=
1
Z

∑
δS=C

PE(S)eAE (S)

’t Hooft loop:

< H(C) >=
1
Z

∑
δS=C

PM(S)eAM(S)

For Wilson loop < W (C) > (’t Hooft loop < H(C) >) the
sum is over electric (magnetic) strings.

The weight P(S) is not positive definite.

The expression for ’t Hooft loop corresponds to the sum
over center vortices.
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Explicit example of string representation

Random surface representation for Z(2) gauge theory

Wilson loop

< W (C) >=

1
Z

∑
Zb=±1

eβ
∑

P ZP
∏
b∈C

Zb =

1
Z

(chβ)NP
∑

δS=C
{th β}S =

1
Z

(chβ)NP
∑

δS=C
eS ln th β

∝
∑

δS=C
e−σS ; σ = − ln th β

The sum is over self-avoiding surfaces, S, with the
boundary C. S is the area of the surface S.

By duality we have the same representation for the ’t Hooft
loop with β → β∗ = −1

2 ln th β.
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Center variables in SU(2) LGT

Synthesis of two ideas

1 Random surface representation for Z(2) gauge theory
2 Center vortices in SU(2) theory are made from center

variables, Zb:

Ub = Zb Ũb, Tr Ũb > 0 , Ub = eiaAµ(x)
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Center variables in SU(2) LGT

Conserving center monopole current

Ub = Zb Ũb, Tr Ũb > 0 ,

UP = ZP ŨP(−1)mP , ZP = Z1Z2Z3Z4, Tr UP > 0 ,

Under gauge transformations mP → mP + d mb, thus
jb∗ = δ∗mP is the conserving center monopole current.

σZ (2) = σSU(2)

Z(2) Wilson loop, WZ (2)(C) =
∏

b∈C Zb gives exact string tension
[Chernodub, M.I.P. unpublished; Faber, Greensite, Olejnik
(1998)].
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Confinement and center monopoles

String representation for Wilson loop in SU(2) LGT

< WZ (2)(C) >=
∑

δS=C

∫
DŨbch(βTr ŨP)

∏
P∈S

th (βTr ŨP)(−1)mP
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Confinement and center monopoles

< WZ (2)(C) >=
∑

δS=C

∫
DŨbch(βTr ŨP)

∏
P∈S

th (βTr ŨP)(−1)mP

THUS WE FOUND ELECTRIC STRINGS IN GLUODYNAMICS

The summation
∑

δS=C is over self-avoiding surfaces.

The weight is not positive definite due to monopole
contribution (−1)mP .

The integration,
∫
DŨb, is over SO(3) (not over SU(2))

group.

The expressions are exact.
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Confinement and center monopoles

Non-positivity of the weight is very important. If we neglect
center monopoles mP then we loose confinement.

< WZ (2)(C) >=
∑

δS=C

∫
DŨbch(βTr ŨP)

∏
P∈S

th (βTr ŨP)(−1)mP

mP = 0
< WZ (2)(C) >=

∑
δS=C

ch(βε)
∏
P∈S

th (βε) ,

But this is the expression for Z(2) gauge theory and for
sufficiently large β in this theory we have deconfinement; (ε > 0
is the minimal value of Tr ŨP).
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Chemical potential for electric strings

We now have a lot of new operators, e.g.
chemical potential for vortex world sheet
Partition function with surface chemical potential µ is:

Z =
∑
δS=0

W (S) → Z[µ] =
∑
δS=0

e−µSW (S)

or

Z[µ] =

∫
DUb[ch(βTr ŨP) + eµsh(βTr ŨP)]

For µ →∞ we have SO(3) LGT, for µ = 0 we have SU(2) LGT.
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Chemical potential for electric strings

The derivative of Z[µ] over µ yields the expectation value of
total area of the electric strings:

〈|S|〉 = −Z−1 ∂

∂µ
Z =

Np

2
〈 (1− exp (−βTr Up)) 〉

〈 exp (−βTr Up) 〉 → 0 at β →∞. Thus the surfaces dual to
center vortices occupy half of all plaquettes and are in a
creased phase with Hausdorf dimension dH →∞.
The same we have for magnetic strings in SU(2) LGT if we do
not fix central gauge.
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Monopoles and center vortices

SU(2) → U(1) Monopole
Current (Closed lines on 4D
lattice)

Confinement ⇔ Monopoles
[H. Shiba and T. Suzuki (1994)]
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Monopoles and center vortices

SU(2) → Z (2) Center Vortices (Closed
surfaces on 4D lattice)

Confinement ⇔ Center Vortices
[L. Del Debbio, M. Faber, J. Greensite,
S. Olejnik (1997)]
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Monopoles and center vortices

Monopole Currents are lying on
Center Vortices
[ J. Ambjorn, J. Giedt, J. Greensite (2000);
A. V. Kovalenko, M. I. P., S. N. Syritsyn,
V. I. Zakharov (2004)]
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Monopoles and center vortices

Abelian Monopoles and Center
Vortices are interrelated

Removing monopoles
( or removing center vortices) ⇒
Removing center vortices
(or removing monopoles) ⇒
remove confinement and chiral
symmetry breaking.

[Ph. de Forcrand, M. D’Elia, (1999);
P. Yu. Boyko, V. G. Bornyakov,
E.-M. Ilgenfritz, A. V. Kovalenko,
B. V. Martemyanov, M. Müller-Preussker,
M. I. P., A. I. Veselov (2005)]
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Monopoles and center vortices

1 The total area of center vortices scales:
Acenter vortex ≈ 24 V4

fm2

2 There are long range correlations < Tr F 2
µν(x) Tr F 2

µν(y) >
on the surface of center vortex [V.G. Bornyakov,
P.Yu. Boyko, M.I.P., V.I. Zakharov (2005), P.V. Buividovich,
M.I.P. (2007)].

These facts can be explained if we suppose that there exists
some field living on the center vortex, the natural candidate is
the monopole field.
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Monopoles and center vortices

There exists something nontrivial (long range correlations) on
the center vortex world sheet.
Fields on the world sheet (monopoles) can induce long range
correlations and nontrivial action for vortices:

exp (−A [S]) =

∫
Dφ exp

−∫
S

d2ξ
√

g L [φ]



A = σ×Area+γ×(internal curvature)+κ×(extrinsic curvature)+. . .
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Numerical results

We calculated numerically coefficients σ, γ and κ for SU(2)
lattice gauge theory.

A [S] =

∫
S

d2ξ
√

g
(
σ0 (a) a−2 + γ (a) R + κ (a) K

)
√

g =
√

det gab, gab = ∂Xµ

∂ξa
∂Xµ

∂ξb is the induced metric on the

surface, a = Λ−1
UV is the lattice spacing. R (K ) is the internal

(extrinsic) curvature.
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Numerical results

Extrapolation to continuum limit a → 0

σ0 (0) = 0.192± 0.006

κ (0) = 0.066± 0.003

γ (0) = 0.08± 0.02

A [S] =

∫
S

d2ξ
√

g
(
σ0 (a) a−2 + γ (a) R + κ (a) K

)
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Numerical results

Self consistency check. Our result is

σ = a−2σ0 ≈ a−2A + a−1B,

A ≈ 0.192, B ≈ 2.2.
If divergence of σ corresponds to self-energy of percolating
one-dimensional object (monopole trajectory) on the world
sheet [J. Ambjorn (1994)] then density of monopoles on
the world sheet is ρ1D = B

ln 4 ≈ 1.5fm−1 which corresponds
to the monopole bare mass mbare = a−1 ln 4. The density
of vortices is ρv ≈ 24fm−2, thus density of monopoles in
four-dimensional space is ρ′1D = 37.(9)fm−3, which should
be compared with the density of Abelian monopoles
obtained by numerical calculations: ρm ≈ 31fm−3.
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Discussion: electric strings in gluodynamics

1 The random surface for Wilson and ’t Hooft loop for SU(2)
LGT is obtained,

< W (C) >=
1
Z

∑
δS=C

PE(S)eAE (S)

2 A lot of new operators(chemical potential, etc.) related to
electric strings are defined.
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Discussion: magnetic strings in gluodynamics

1 The world sheet action with intrinsic and extrinsic curvature
naturally arises after integration over fields (monopoles?)
living on the vortex.

2 Intrinsic and external rigidity terms in the effective center
vortex action was found. Rigidity of center vortices was
first suggested by Engelhardt and Reinhardt in 1999 from
phenomenological analysis.
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