Anisotropy of dark matter annihilation in the Galaxy

V. Dokuchaev, V. Berezinsky and Yu. Eroshenko

Institute for Nuclear Research Russian Academy of Sciences, Moscow

13th Lomonosov Conference — 2007

♦ Large-scale DM clumps from simulations

DM halo clumpiness

Small-scale DM clumps from simulations

 $\begin{array}{cccc} 3 \ {\rm kpc} & 60 \ {\rm pc} & 0.024 \ {\rm pc} \\ N = 62 \cdot 10^6, & m = 10^{-10} M_{\odot}, & M_{\rm cl} = 10^{-6} M_{\odot}, & z = 350 \rightarrow 26 \\ & & {\rm Diemand, \, Moore \, \& \, Stadel \ '05} \end{array}$

Internal density profile of DM clump

$$ho_{
m int}(r) \;=\; \left\{ egin{array}{ccc}
ho_c, & r < R_c; \
ho_c \left(rac{r}{R_c}
ight)^{-eta}, & R_c < r < R; \ 0, & r > R, \end{array}
ight. eta \simeq 1.8$$

Analytical theory DM clump core radius?

$$rac{R_c}{R} \leq 0.01$$

Model Simulations Berezinsky, Dokuchaev & Eroshenko '03, '06 Diemand, Moore & Stadel '05

Gurevich & Zybin '90 '97

♦ Mass function of small-scale DM clumps

Lower line – model calculation Dots – numerical simulations Berezinsky, Dokuchaev & Eroshenko '03 Diemand, Moore & Stadel '05

Small-scale DM clumps in the Galactic halo

from primordial fluctuations...

Stellar components of the Milky Way

Tidal destruction of small-scale DM clumps by stars

The fraction of clumps with mass $M = 2 \cdot 10^{-6} M_{\odot}$ survived through tidal destruction in the Galactic disc $P_{\rm d}$, Galactic halo $P_{\rm H}$, $P_{\rm tot} = P_{\rm H}P_d$ Absence of clumps inside the bulge at r < 3 kpc.

The survived fraction of clumps P(r) in the Galactic halo Internal density of clumps ρ_{cl} in GeV cm⁻³

Anisotropy of DM clump distribution in the Galaxy

A survival probability $P(r, \alpha)$ of DM clumps in the halo as a function of a radius r and angle α between a radius-vector \vec{r} and the disk polar axis.

Normalized anisotropy of DM clump distribution

The normalized fractions of DM clumps in the halo $P(r, \alpha)$ as a function of an angle α between a radius-vector \vec{r} and the disk polar axis for r = 3, 8.5 and 20 kpc (from the bottom to the top)

Annihilation signal from DM clumps

An annihilation signal in the Galactic disk plane and in the vertical plane as a function of angle ξ between the line of observation and the direction to the Galactic center. For comparison it is shown also the signal from the Galactic halo without the DM clumps

♦ Conclusions

• DM annihilation rate in the Galactic halo is dominated by clumps if mass fraction in clumps is above a few percent

• Amplification (boosting) of annihilation signal due to DM clumps is $\sim 10 - 10^3$ and crucially depends on the initial perturbation spectrum

• Tidal destruction of clumps with orbits near the disk plane occurs more efficiently as compared with the near-polar orbits

• Annihilation of DM particles in the small-scale clumps produces anisotropic ($\sim 5\%$) gamma-ray signal with respect to the Galactic disk