УДК 669.018:538.632

АНОМАЛЬНЫЙ ЭФФЕКТ НЕРНСТА–ЭТТИНГСГАУЗЕНА В МАГНИТНЫХ ГРАНУЛИРОВАННЫХ СПЛАВАХ

А. В. Калицов, М. Г. Чшиев, Н. И. Цидаева*)

(кафедра магнетизма)

Теоретически исследуется поведение аномального эффекта Нернста–Эттиш сгаузена (АЭНЭ) в магнитных гранулированных сплавах. Расчет выполнен в модели Шенга–Леви. Рассматривается асимметричное рассеяние спин-поляризованных электронов на примесях, возникающее под действием спин-орбитального взаимодействия. Показано, что в гранулированных сплавах при значительной роли поверхностного рассеяния значение коэффициента Q_s АЭНЭ может быть существенно больше, чем значение коэффициента Q_s^b АЭНЭ однородного ферромагнитного материала, более того, Q_s и Q_s^b могут иметь разные знаки.

В последние годы в целом ряде магнитных многослойных и гранулированных структур обнаружен эффект гигантского магнетосопротивления (ГМС) [1-4], заключающийся в значительном изменении сопротивления магнито-неоднородных материалов при изменении внешним магнитным полем локальных магнитных конфигураций. Этот эффект представляет существенный интерес для практического использования в магниторезистивных считывающих головках и магнитных сенсорах слабого поля. Теория ГМС в магнитных гранулированных сплавах была разработана Шенгом и Леви [5]. В ее основе лежит предположение, что спин-зависящий потенциал рассеяния электронов проводимости гранулированной системы представляет собой средневзвешенную сумму вкладов потенциалов рассеяния в матрице, гранулах и на поверхности гранул.

Среди прочих кинетических явлений в магнитных гранулированных сплавах значительный интерес представляют аномальный эффект Холла (АЭХ) [3, 6–8], термоэдс [9–11] и аномальный эффект Нернста–Эттингсгаузена (АЭНЭ). Недавно выполненные экспериментальные исследования АЭХ и термоэдс в магнитных гранулированных сплавах [3, 6, 7, 9–11] показали, что поведение АЭХ и термоэдс в этих неоднородных системах существенно иное, нежели в однородных ферромагнитных материалах. Исследование различных кинетических эффектов позволяет получить дополнительную информацию об электронной структуре, особенностях спин-зависящего рассеяния и микроструктуре гранулированных сплавов с ГМС.

АЭНЭ является, с одной стороны, центральным эффектом в группе нечетных по намагниченности термомагнитных эффектов, а с другой стороны — термоэлектрическим аналогом АЭХ. Поэтому следует ожидать, что спин-зависящее рассеяние электронов проводимости в магнитных неоднородных системах может привести к необычному поведению АЭНЭ. Настоящая работа посвящена исследованию концентрационной зависимости АЭНЭ магнитных гранулированных сплавов в поле насыщения.

Постановка задачи

В ферромагнетике при наличии градиента температуры и внешнего магнитного поля выражение для возникающего электрического поля имеет вид [12]

$$\mathbf{E} = S \mathbf{\nabla} T - Q_0 \mathbf{B} imes \mathbf{\nabla} T - Q_s 4 \pi \mathbf{M} imes \mathbf{\nabla} T,$$

где S — термоэдс, Q_0 — константа нормального эффекта Нернста–Эттингсгаузена, Q_s — коэффициент АЭНЭ, который, как правило, существенно превышает значение Q_0 и имеет сильную температурную зависимость. Коэффициент Q_s АЭНЭ состоит из двух членов: пропорционального термоэдс «холловского вклада»

$$Q_{s1} = -\frac{SR_s}{\rho},$$

и «истинного вклада»

$$Q_{s\,2} = -rac{\pi^2}{3}rac{K_B^2}{|e|}T
hoiggl(rac{\partial}{\partial\epsilon}rac{R_s}{
ho^2}iggr)_{\epsilon\,\pi},$$

где R_s — коэффициент АЭХ, ρ — полное сопротивление сплава, ϵ — энергия, ϵ_F — уровень Ферми. «Холловский вклад» связан с отдельно измеряемыми величинами S, R_s , ρ и может быть легко выделен экспериментально. Поэтому в данной работе рассматривается только «истинный вклад».

В работе [8] была разработана методика расчета АЭХ магнитных гранулированных сплавов в модели Шенга–Леви. В результате для вклада в коэффициент R_s АЭХ электронов проводимости со спином вдоль намагниченности получено следующее выражение:

 $R_s = \frac{\Delta_1^2}{\xi_0^2} \left[R_s^b \frac{(1+p_b^2)^2}{(1-p_b)^4} + R_s^s \frac{(1+p_s^2)^2}{(1-p_s)^4} \right],$

где

$$\xi_0 = rac{1-c}{l_{nm}} + rac{c(1+p_b^2)}{l_m} + rac{3c(1+p_s^2)}{r_0 l_s/a_0}$$

^{*)} Северо-Осетинский государственный университет, физический факультет.

$$\Delta_{1} = \frac{1-c}{l_{nm}} + \frac{c(1-p_{b})^{2}}{l_{m}} + \frac{3c(1-p_{s})^{2}}{r_{0}l_{s}/a_{0}},$$
$$l_{t} = \frac{\epsilon_{F}/k_{F}}{(\pi/N_{t})\sum_{i \in t}|V_{i}^{(t)}|^{2}\rho(\epsilon_{F})},$$

 R_s^b и R_s^s — значения коэффициента АЭХ в объеме и на поверхности ферромагнитных гранул, $V^{(t)}$ спин-независящие потенциалы рассеяния электронов проводимости в матрице, гранулах и на поверхности гранул (t = nm, m, s), N_t — общее число примесей, l_t — средняя длина свободного пробега электронов проводимости, p_b и p_s — отношения спин-зависящих к спин-независящим потенциалам рассеяния в объеме и на поверхности гранул, $\rho(\epsilon_F)$ — плотность состояний на уровне Ферми, c — объемная концентрация гранул, r_0 — средний радиус гранул, a_0 — постоянная решетки. Таким образом, задача расчета коэффициента АЭНЭ Q_{s2} сводится к дифференцированию по энергии полученных выражений для аномальной холловской электропроводности магнитных гранулированных сплавов.

Результаты расчета и обсуждение

В модели Шенга–Леви потенциалы рассеяния полагались не зависящими от энергии, что можно считать справедливым для анализа ρ и R_s . В более общем случае для термоэлектрических эффектов потенциалы рассеяния и потенциалы спин-орбитального взаимодействия (СОВ) могут сильно зависеть от энергии. Опуская промежуточные выкладки, приведем окончательное выражение для коэффициента АЭНЭ Q_{s2} магнитных гранулированных сплавов:

$$\begin{aligned} Q_{s2} &= \frac{\Delta_1}{\xi_0 \Delta_0} \Bigg[Q_{s2}^b \frac{(1+p_b^2)(1+p_b)^2}{l_m (1-p_b)^2} \times \\ &\times \Bigg(1 + \frac{2\epsilon_F V_{nm}^{2\prime\prime}(\epsilon_F)}{5V_{nm}^2} \Bigg(b_3 - \frac{2\Delta_0'}{\Delta_0} \Bigg) \Bigg) + \\ &+ Q_{s2}^s \frac{3(1+p_s^2)(1+p_s)^2}{r_0 l_s a_0 (1-p_s)^2} \times \\ &\times \Bigg(1 + \frac{2\epsilon_F V_{nm}^{2\prime\prime}(\epsilon_F)}{5V_{nm}^2} \Bigg(b_4 - \frac{2\Delta_0'}{\Delta_0} \Bigg) \Bigg) \Bigg], \end{aligned}$$
(1)

где

$$\begin{split} \Delta_{0} &= \frac{1-c}{l_{nm}} + \frac{c(1+p_{b})^{2}}{l_{m}} + \frac{3c(1+p_{s})^{2}}{r_{0}l_{s}/a_{0}}, \\ \Delta_{0}' &= \frac{1-c}{l_{nm}} + b_{1}\frac{c(1+p_{b})^{2}}{l_{m}} + b_{2}\frac{3c(1+p_{s})^{2}}{r_{0}l_{s}/a_{0}}, \\ b_{1} &= \frac{V_{m}^{2'}(\epsilon_{F})}{V_{nm}^{2'}(\epsilon_{F})}, \qquad b_{2} &= \frac{V_{s}^{2'}(\epsilon_{F})}{V_{nm}^{2'}(\epsilon_{F})}, \\ b_{3} &= \frac{(\lambda_{m}^{so}V_{m}^{2}(\epsilon_{F}))'}{\lambda_{m}^{so}V_{nm}^{2'}(\epsilon_{F})}, \quad b_{4} &= \frac{(\lambda_{s}^{so}V_{s}^{2}(\epsilon_{F}))'}{\lambda_{s}^{so}V_{nm}^{2'}(\epsilon_{F})}, \end{split}$$

 λ_m^{so} и λ_s^{so} — потенциалы СОВ в объеме и на поверхности ферромагнитных гранул. Далее для простоты рассмотрим частный случай, когда потенциалы рассеяния и

СОВ не зависят от энергии:

$$\begin{split} Q_{s2} = & \frac{\Delta_1}{\xi_0 \Delta_0} \left[Q_{s2}^b \frac{(1+p_b^2)(1+p_b)^2}{l_m (1-p_b)^2} + \\ & + Q_{s2}^s \frac{3(1+p_s^2)(1+p_s)^2}{r_0 l_s / a_0 (1-p_s)^2} \right] \end{split}$$

АЭХ и АЭНЭ связаны с рассеянием *d*-подобных спин-поляризованных электронов со спином вдоль (\uparrow) и против (\downarrow) намагниченности. Мы рассматриваем вклад в Q_{s2} только одной подзоны (со спином \uparrow), так как вклад в Q_{s2} другой подзоны (со спином \downarrow) аналогичен:

$$\begin{split} Q_{s2}^{\downarrow} &= \frac{\Delta_1}{\xi_0 \Delta_0} \Bigg[Q_{s2}^{b\downarrow} \frac{(1+p_b^2) (1+p_b)^2}{l_m (1-p_b)^2} + \\ &+ Q_{s2}^{s\downarrow} \frac{3(1+p_s^2) (1+p_s)^2}{r_0 l_s / a_0 (1-p_s)^2} \Bigg] \end{split}$$

На рис. 1-3 представлена концентрационная зависимость сопротивления «истинного вклада» АЭНЭ магнитных гранулированных сплавов $\rho_N = 4\pi c Q_{s2} M_z$. Как видно из построенных кривых, сопротивление ρ_N АЭНЭ магнитных гранулированных сплавов может существенно отличаться от сопротивления ρ_N^b АЭНЭ однородных ферромагнитных материалов. В отсутствие поверхностного рассеяния $(l_s/a_0 \rightarrow \infty, Q_{s2} = 0)$ для реальных значений концентраций ($c = 0, 2 \div 0, 4$) $\rho_N < \rho_N^b$ (рис. 1, кривая 1). С учетом влияния интерфейсов $(l_s/a_0 = 2 \div 10)$, в предположении, что концентрация примесей и потенциалы СОВ на поверхности гранул такие же, как и в объеме ($Q_{s_2}^s = Q_{s_2}^b$), получено, что $\rho_N \ge \rho_N^b$ (рис. 1, кривые 2 и 3). В реальных магнитных гранулированных сплавах Со₂₀Ag₈₀ с ГМС, равным 40%, $l_m = 50$ Å, $l_{nm} = 200$ Å, $l_s/a_0 = 2$ [5]. Таким образом, получено, что для сплава Со20Ад80 ρ_N в 1,7 раз превышает значение ρ_N^b (рис. 1, кривая 3). Сопротивление ρ_N АЭНЭ гранулированных сплавов в значительной степени определяется шероховатостью поверхности гранул. При усилении относительной роли интерфейсов ρ_N возрастает и может быть существенно больше ρ_N^b (рис. 2). Более того, если потенциалы СОВ в объеме и на поверхности гранул имеют разные знаки, ρ_N и ρ_N^b могут также иметь разные знаки (рис. 3). Для сплавов Со₂₀Ag₈₀ $|\rho_N/\rho_N^b| \approx 10$ (рис. 2, 3).

В заключение следует отметить, что результаты получены в приближении независимости потенциалов рассеяния и СОВ от энергии. В общем случае (выражение (1)) поведение АЭНЭ магнитных гранулированных сплавов может быть более сложным. Экспериментальная проверка выводов теории позволит не только подтвердить развитые представления о природе АЭНЭ, но и получить дополнительную информацию о микроструктуре поверхности гранул.

Рис. 1. Зависимость сопротивления «истинного вклада» АЭНЭ ρ_N/ρ_N^b магнитных гранулированных сплавов Со₂₀Аg₈₀ от объемной концентрации ферромагнитных гранул ($p_b = 0, 2, l_m = 50$ Å, $l_{nm} = 200$ Å, $r_0 = 20$ Å): $p_s = 0, l_s/a_0 \to \infty, \rho_N^s/\rho_N^b = 0$ ($\rho_N^s -$ сопротивление АЭНЭ на поверхности гранул) — кривая l, $p_s = 0, 52, l_s/a_0 = 10, \rho_N^s/\rho_N^b = 1$ — кривая 2, $p_s = 0, 52, l_s/a_0 = 2, \rho_N^s/\rho_N^b = 1$ — кривая 3

Рис. 2. Зависимость сопротивления «истинного вклада» АЭНЭ ρ_N/ρ_N^b магнитных гранулированных сплавов от объемной концентрации ферромагнитных гранул ($p_b = 0, 2, l_m = 50$ Å, $l_{nm} = 200$ Å, $r_0 = 20$ Å, $p_s = 0, 52, l_s/a_0 = 2$): $\rho_N^s/\rho_N^b = 2$ (кривая *l*), 4 (2) и 6 (3)

Выводы

1. Поведение АЭНЭ магнитных гранулированных сплавов может существенно отличаться от поведения АЭНЭ однородных ферромагнитных материалов, что обусловлено влиянием интерфейсов между гранулами и матрицей.

2. В гранулированных сплавах $Co_{20}Ag_{80}$ при существенной роли поверхностного рассеяния сопротивление АЭНЭ может в 10 раз превосходить сопротивление АЭНЭ однородного ферромагнитного материала, более того, ρ_N и ρ_N^b могут иметь противоположные знаки.

Данная работа выполнена при частичной поддержке Российского фонда фундаментальных исследований (грант 96-02-19681а).

Литература

- Baibich M.N., Bruto J.M., Fert A. et al. // Phys. Rev. Lett. 1988. 61. P. 2472.
- Berkowitz A. E., Mitchell J. R., Caro M. R. et al. // Ibid. 1992. 68. P. 3745.
- 3. Xiong P., Xiao G., Wang J. Q. et al. //Ibid. 1992. 69. P. 3220.
- Teixeira S.R., Dieny B., Chamberod A. et al. // J. Phys.: Condens. Matter. 1994. 6. P. 5545.
- 5. Zhang S., Levy P. M. // J. Appl. Phys. 1993. 73. P. 5315.
- 6. Wang J. Q., Xiao G. // Phys. Rev. 1995. B51. P. 5863.
- Pakhomov A. B., Yan X., Zhao B., Xu Y. // Appl. Phys. Lett. 1995. 67. P. 3497.
- Granovsky A., Brouers F., Kalitsov A., Chshiev M. // J. Magn. and Magn. Mater. 1997. 166. P.193.
- Jing Shi, Eiji Kita, L.Xing, Salamon M.B. // Phys. Rev. 1993. B48. P. 16119.
- Piraux L., Cassart M., Grivei E. et al. // J. Magn. and Magn. Mater. 1994. 136. P. 221.
- Piraux L., Cassart M., Bayot V. et al. // IEEE Trans. Magn. 1993.
 29. P. 2700.
- 12. Ведяев А. В., Грановский А. Б., Котельникова О. А. Кинетические явления в неупорядоченных ферромагнитных сплавах. М., 1992. С. 158.

Поступила в редакцию 16.12.96