ФИЗИКА ТВЕРДОГО ТЕЛА

УДК 621.382

АНОМАЛИИ ПРОДОЛЬНОГО МАГНЕТОСОПРОТИВЛЕНИЯ В *n*-InSb

В. В. Остробородова, Терра Аль-Сайед Ф.

(кафедра физики полупроводников)

Исследованы зависимости омических V_x и холловских V_{Hy} потенциалов монокристаллов InSb от угла α между направлениями тока J_x и магнитной индукции B_{zx} при температурах 60–350 К в магнитных полях 0,1–20 кГс. В ряде образцов с собственной и примесной проводимостью *n*-типа обнаружено резкое уменьшение V_x между потенциальными контактами при α , близком к 0 (180°). Природа эффекта обсуждается с точки зрения «ростовых» отклонений от стехиометрии и обусловленных ими низкоомных включений с проводимостью *n*-типа.

В работе [1] при исследовании зависимостей магнетосопротивления (МС) монокристаллов $A^{IV} B^{VI}$ от угла α между направлениями тока J_x и вектора магнитной индукции \mathbf{B}_{zx} (см. вставку на рис. 1) в ря-

де образцов PbSe, PbSnSe *n*-типа нами было обнаружено уменьшение более чем в 10 раз напряжений V_x между потенциальными контактами в геометрии **B**||**J** ($\alpha = 0$ или 180°, далее будем обозначать «0»).

Рис. 1. Изменение потенциалов между контактами 3–5 и 4–6 при поперечной геометрии расположения образцов в магнитном поле ($\alpha = 90^{\circ}$, $\beta = 0$). Кривые I - 300 K, II - 80 K; n1 (1), n3 (2), n5 (значки 3, 4 — контакты 3–5, значки 5, 6 — контакты 4–6), p7 (7). На вставке — расположение образцов с током в магнитном поле

Эффект, формально проявляющийся как гигантское отрицательное MC (OMC), наблюдался при 60-80 К, когда в полях 10–15 кГс выполнялось условие $\mu_n B >$ 1. Эффект ОМС с уменьшением $V_x(B)/V_x(0)$ не более чем в 2 раза наблюдался ранее в металлах Bi, Sb, Al при планарной ориентации J_x и B_{yx} [2] и объяснялся с привлечением квадратичного эффекта Холла, максимум которого соответствует углам $lpha=0,\,eta\cong45^\circ.$ При этом, однако, величины V_x и сам вид кривых $V_x(B)$ в сильной степени зависели от свойств токовых контактов, которые явно вызывали искривления линий тока в приконтактных областях. В нашем случае [1] токовые контакты не вносили подобных искажений; учитывая результаты работы [3], мы предположили, что искривления линий тока в объеме самих образцов могут быть обусловлены их макроскопической неоднородностью, вызываемой отклонениями от стехиометрии и носящей характер низкоомных включений *n*-типа. Образцы с гигантским ОМС имели заниженные по сравнению с другими образцами *n*-типа величины поперечного ($\alpha = 90^\circ, \beta = 0$) МС, различные в разных образцах и уменьшающиеся при понижении температуры, несмотря на постоянство концентрации и типичную для $A^{IV}B^{VI}$ температурную зависимость подвижности $\mu_n(T)$.

В настоящей работе мы продолжили эти исследования в монокристаллах InSb, которые обладают существенно меньшими отклонениями от стехиометрии и позволяют получать сильные магнитные поля. Первые же измерения при комнатной температуре в произвольно выбранных слабо легированных образцах обнаружили уменьшение V_x в несколько раз в поле 20 кГс при $\mathbf{B}||\mathbf{J}_x$. Поэтому мы провели далее систематические исследования температурных, полевых и угловых зависимостей омических V_x и холловских V_{Hy} потенциалов в различных сечениях образцов.

Таблица 1

Параметры образцов, полученные на двух парах потенциальных контактов. M_1 - величина поперечного МС при $\mu B = 1$ (в скобках — между контактами 1–2)

Тип про- водимости	d [мм]	$ N_d - N_a $	μ _H (80 K)	M_1	
образцов		$[10^{14} \text{ cm}^{-3}]$	$[10^4 \text{ cm}^2/(\text{B}\cdot\text{c})]$	300 K	80 K
n1	1,2	5,1 5,0	53 52	0,08 0,07 (0,36)	0,040 0,036 (0,13)
n2	1,2	4,0 4,2	50 45	0,08 0,13 (0,61)	$0,050 \\ 0,080 \\ (0,40)$
n3	1,2	5,3 5,2	42 40	0,08 0,07	0,034 0,046
n4	1,2	3,2 3,2	58 52	0,07 0,09	0,040 0,030
n5	4,0	2500 2100	6,6 4,5	0,021 0,004	0,020 0,003
p6	3,0	1,2 1,0	1,6 1,0	0,07 0,04	0,30 0,26
<i>p</i> 7	1,2	2,9 3,4	1,1 0,8	0,08 0,09 (0,33)	0,30 0,44 (0,42)
<i>p</i> 8	2,0	2,5 2,4	54 1,0	0,05 0,10	

Образцы скалывались по плоскостям спайности оптически полированных шайб, вырезанных перпендикулярно направлению роста ([112] для образцов *n*1-*n*4, *p*7, [111] для остальных, см. табл. 1), с обрезкой торцов под прямым углом. Напаянные контакты из индия (сплошные токовые и точечные потенциальные) располагались обычным образом (см. вставку на рис. 1). Все измерения проводились на двух парах потенциальных контактов: *ik* (3-5, 4-6) и *ij* (3-4, 5-6) при двух направлениях тока и магнитного поля. Длина образцов L = 1, 2-1, 5 см, ширина $\sim 0, 3$ см, толщина *d* приведена в табл. 1. Расстояние между потенциальными контактами l_{ik} не превышало 0, 3 L. Малость приконтактных искривлений тока подтверждалась измерениями МС при расположении одного из потенциальных контактов вблизи токового. В ряде образцов измерялось «геометрическое» MC [4] между контактами 1-2. Интервал изменения температур составлял 60-350 К, магнитных полей — 0,1-20 кГс (для получения $B \leq 1$ кГс использовался соленоид). Для определения концентрации $|N_d - N_a|$ и подвижностей использовались значения постоянной Холла R_{∞} $(\mu_n B \gg 1)$ (в состояниях *p*-типа достигались условия $\mu_p B \ge 1$).

Таблица 2

Минимум отношений $V_{ik}(B, \alpha)/V_{ik0} \cong X$ на разных парах
потенциальных контактов и относительные холловские
потенциалы $V_H(lpha)/V_H(90^\circ)\equiv Y$ в точках X для пар
контактов 4-6 в образцах 1, 3, 4, 6 и 3-5 в образцах 5, 7, 8

Номер	T [K]	X		Y		
образцов		3-5	4-6	3–4	5-6	D[KIU]
n1	300	0,80	0,75	+0,022	-0,01	13
	350 80	0,80 0.35	0,62	-0 046	+0.23	
	00	0,55	0,05	0,040	10,25	
n2	300	0,98	0,96			10
n3	300	0,95	0,77	+0,01	0,00	20
n4	300 130	0,55 0,34	0,60 0,32	+0,03	+0,025	13
	80 60	0,20 0,26	0,30 0,26	+0,02	-0,03	
n5	300 80	0,05 0,06	0,01 0,01	+0,016	0,00	20 13
p6	300	0,78	0,72	+0,012	-0,013	13
p7	300 225	0,58 0,60	1,02 0,70	+0,024 +0,048	-0,045	20 13
<i>p</i> 8	300 325 200 80	0,073 0,20 0,057 0,77	0,53 0,62 0,95 1,05	+0,19 +0,15 +0,027	+0,22 +0,15 -0,10	20 13

Зависимости $V_H(\alpha)$ в сильном поле были близки к стандартным, с переходом через нуль в точке $\alpha \cong 0$. При обнаружении в этой точке заметного уменьшения $V_x(B)/V_x(0)$ осуществлялась дальнейшая доводка среднего $V_x(B)$ до абсолютного минимума путем слабых изменений α вокруг 0. Поскольку во всех случаях минимумы отношения $V_{ik}(B, \alpha)/V_{ik0} \equiv X$ (табл. 2) были весьма острыми, мы далее будем называть их «X-точками».

Использование цифровой аппаратуры в цепях образцов и магнитов обеспечивало уверенное определение $\Delta V/V(0) \ge 5 \cdot 10^{-4}$.

Результаты

В табл. 1 приведены электронные параметры образцов. Из четырех значений холловской подвижности $\mu_{ijk} = R_{ij}/\rho_{ik}$ в таблице приведены только максимальное и минимальное. Образцы n1-n4 получены из одной шайбы, поэтому разброс значений $N_d - N_a$ и μ характеризует степень ее однородности. Величины поперечного МС при $\mu B = 1$ (M_1) в этих образцах близки в области собственной проводимости, но с понижением температуры и переходом к примесной проводимости уменьшались в 2–3 раза. В сильно легированном образце n5 значения M_1 оказались наиболее низкими и практически одинаковыми при

300 и 80 К (что соответствует температурному постоянству концентрации и очень слабому (не более 10%) росту $\mu_n(1/T)$), но сильно различающимися на разных парах потенциальных контактов. Во всех случаях «геометрические» M_1 в 5–7 раз превышали их величины на потенциальных контактах, что соответствовало расчетам [4]. Температурные зависимости подвижностей были типичными для InSb [4].

В образцах с примесной проводимостью р-типа при 80 К значения М1 были на порядок выше, чем в образцах *п*-типа, и одинаковыми для токовых и потенциальных контактов. Данные для образца р8 приведены специально для иллюстрации проявлений макроскопической неоднородности: уже при комнатной температуре значения ρ_{35} были существенно меньше, чем ho_{46} при близких $R_{ij\infty}$, так что можно было говорить о существовании низкоомной области между контактами 3-5. На этих же контактах величина M_1 была вдвое меньше, чем на контактах 4-6. Заниженные ρ_{35} сохранились и при 80 К. Это доказывает, что низкоомное включение захватывает всю область между контактами, обусловливая высокое μ^* ; при этом постоянные Холла $R_{34\infty}\cong R_{56\infty}$ (включая знаки, соответствующие *p*-типу), т.е. относятся к однородной части кристалла [5].

На рис. 1 показаны зависимости поперечного MC от $\mu_n B$ для нескольких образцов. Явно проявляющийся наклон, пропорциональный B^2 в области слабых полей, подтверждает корректность измерений. Как видно, в случае наиболее низких значений MC проявление участков OMC возможно даже в поперечной геометрии, что служит доказательством отклонения от строгой перпендикулярности вектора **B** к линиям тока. Уже здесь можно предположить, что именно искривления линий тока ведут к возникновению компенсирующих потенциалов, понижающих «поперечное» MC.

На рис. 2 показаны зависимости $V_x(\alpha)$ образцов n5, p8 и n1 при комнатной температуре. Как видно, в «геометрическом» МС эффект ОМС полностью отсутствует. Кривые 1, 2, измеренные на потенциальных контактах, имеют очень острые минимумы, что, как нам кажется, также обусловлено наличием компенсирующих потенциалов, сильно зависящих от угла α между направлениями тока и магнитного поля. Видно, что в случае сильно легированного образца n5 (более однородного по отношению к компенсационным включениям [3]) X-точка соответствует $\alpha = 0$, а в случае наиболее неоднородного p8 сдвинута на 25–30° от этого положения.

Результаты исследования угловых зависимостей V_{ik} представлены в табл. 2. Как видно, значения X различны не только для разных образцов, но и для разных пар потенциальных контактов. Располагая зависимостью $V_{ik}(\alpha)$ (рис. 2) и параметром $Y = V_H(\alpha)/(V_H(90^\circ))$ в X-точках, можно оценить смещение X-точек относительно $\alpha = 0$. Значения Y, приведенные в табл. 2 для наиболее глубоких ми-

нимумов, позволяют сделать вывод, что X-точки в случае более однородных состояний располагаются вблизи $\alpha = 0$. Для образца n5 ясно видна корреляция между величинами X и M_1 на разных парах контактов, свидетельствующая об общей природе заниженных «поперечных MC» и гигантских отрицательных «продольных MC».

Рис. 2. Относительные изменения $V_x(B,\alpha)/V_{x0}$ между контактами 3-5 образцов p8 (l) и n5 (2) и контактами l-2 образца n1 (3) при комнатной температуре и B = 20 кГс. Штриховая кривая — изменение относительных холловских потенциалов $V_H(\alpha)/V_H(90^\circ)$ в разных образцах (знаки «+» и «-» совпадают со знаками параметра Y в табл. 2)

Сильные различия в значениях Х требуют более детального анализа характера зависимости V_{ik} от магнитного поля в самих Х-точках. Наиболее удобным параметром в этом случае является эффективная «магнетопроводимость», которую в нашем случае более корректно характеризовать отношением $\theta \equiv |\Delta V_x|/V_x(B)$. Оно представлено на рис. 3 для минимумов различной глубины. Обращает на себя внимание широкий интервал значений $\mu_n B$, в котором проявляется ОМС, хотя в любом случае с ростом поля в растет. Кривые, соответствующие меньшему росту $\theta(B)$, не имеют насыщения, что позволяет ожидать дальнейшего роста θ в более сильных полях. Отмеченные закономерности, на наш взгляд, очень важны, поскольку можно связать особенности роста $\theta(B)$ с нарастанием компенсирующих напряжений (об этом еще будет сказано ниже), а сам эффект ОМС — с «плотностью» и общим вкладом низкоомных областей в процессе переноса тока в образцах. Сопоставляя эти результаты с полученными в работе [2] и учитывая их разную геометрию и, очевидно, разные значения $\mu_n B$, можно сделать некоторые общие выводы: искривление линий тока приводит к возникновению в образцах разностей потенциалов, компенсирующих основные, заданные внешним электрическим полем. Отметим в этой связи, что степень «огибания» низкоомных включений, согласно расчетам работы [5], растет с ростом магнитного поля, и при высоких $\mu_n B$ носители полностью огибают эти области, что приводит к максимальным искривлениям линий тока.

Рис. 3. «Магнетопроводимость» некоторых образцов в X-точках при 300 К (кривые I) и 80 К (II): n1 (1, 2, 3), n5 (4), p7 (5), p8 (6). Нижние пунктирные концы кривых — переход к отрицательным или нулевым значениям. Расхождение кривых при разных токах показано для образца n1; все остальные кривые сняты при токе 100 мА. Кривая со значками 3 получена на контактах 4–6, все остальные — на контактах 3–5

Важными, на наш взгляд, представляются и особенности минимальных $V_{ik}(\pm J, \pm B)$ в X-точках. Для них характерны: а) преобладание холловской составляющей над омической (особенно в точках, заметно смещенных относительно 0°); б) токовая асимметрия, отражающая эффекты выпрямления, наиболее выраженная при низкой температуре в слабо легированных образцах и свидетельствующая о наличии компенсационных включений [3]; в) близкая к полной симметрия значений V_{ik} по отношению к направлениям тока и магнитного поля, наблюдаемая в сильно легированном образце n5 и в области собственной проводимости других образцов. В состояниях с сильно выраженным ОМС в области высоких θ появляется зависимость скорости нарастания $\theta(B)$ от величины тока через образец (рис. 3). Минимальные средние значения V_{ik} здесь имеют знаки, противоположные заданным внешним полем (эти значения в табл. 2 и на рис. 3 не приводятся).

Расположение наиболее глубоких X-точек вблизи $\alpha \cong 0$ отражает, на наш взгляд, отсутствие заметного вклада компенсационных включений; в этом случае основную роль могут играть неоднородности «ростового» происхождения в направлении толщины образцов, по-видимому связанные с неплоским фронтом кристаллизации из-за большого диаметра шайб (~ 5 см!) и с тем, что образующие выделения компоненты являются металлами. В пользу роли низкоомных включений в эффекте ОМС говорит и полное его отсутствие в состояниях *p*-типа, хотя достигаемые в наших экспериментах условия $\mu_p B \ge 1$ соответствуют его проявлению в состояниях *n*-типа.

В отдельных измерениях $V_ik(\alpha, B)$ при $\beta \neq 0$ эффект ОМС только ослаблялся. Исследования, проведенные нами также в германии и кремнии, не обнаружили эффекта ОМС, хотя в германии квадратичный эффект Холла наблюдался [6]. В InAs с $n \cong 10^{17}$ см⁻³ $V_{ik}(B)$ уменьшалось на 15–20% при комнатной температуре, $\alpha = 0, B = 20$ кГс.

Таким образом, вывод, сделанный нами ранее относительно природы ОМС [1], подтверждается результатами настоящей работы. Похоже, что даже слабые отклонения от стехиометрии в интерметаллических соединениях (в частности, в InSb) достаточны для возникновения «ростовых» низкоомных включений, сильно искривляющих линии тока в магнитном поле и вызывающих появление внутренних потенциалов, компенсирующих основные. Роль компенсирующих потенциалов наиболее велика в геометрии **J**||**B**, когда истинное магнетосопротивление минимально; в поперечной геометрии компенсирующие потенциалы занижают значения MC.

В заключение авторы выражают благодарность О.Г.Кошелеву и А.Э.Юновичу за предоставление образцов и интерес к работе; И.П.Звягину, А.И.Лебедеву, Н.Б.Брандту за ценные рекомендации в ходе подготовки статьи.

Литература

- Остробородова В.В., Терра Ф. // Вестн. Моск. ун-та. Физ. Астрон. 1989. № 5. С. 57 (Moscow University Phys. Bull. 1989. No. 5. P. 54).
- Алексеевский Н.Е., Брандт Н.Б., Костина Т.И. // Вестн. Моск. ун-та. Сер. матем., мех., астрон., физ., хим. 1958. № 5. С. 73; ЖЭТФ. 1958. 34. С. 1039.
- 3. Остробородова В.В. // Изв. вузов, Физика. 1987. № 6. С. 63.
- Wolfe C.M., Stillman G.E., Spears D.E. //J. Appl. Phys. 1973. 44, No. 10. P. 732.
- 6. Goldberg C., Davis R.E. // Phys. Rev. 1954. 94, № . 5. P. 1832.

Поступила в редакцию 05.07.96 После переработки 15.01.97