УДК 538.955; 537.62; 537.621

О ПАРАПРОЦЕССЕ СУПЕРПАРАМАГНИТНОГО ТИПА

В. И. Николаев, Т. А. Бушина, Ким Ен Чан

(кафедра общей физики)

В рамках формализма теории молекулярного поля с использованием модели Ланжевена рассмотрены отличительные особенности парапроцесса в суперпарамагнитных частицах. Показано, в частности, что при температуре Кюри в магнитных полях H, не превышающих по порядку величины «характеристического поля» $H' = kT_C/\mu_0$ (μ_0 — магнитный момент частицы при абсолютном насыщении, T_C — температура Кюри), намагниченность ансамбля суперпарамагнитных частиц пропорциональна H^3 , независимо от разброса их размеров (и момента μ_0).

1. Введение

Парапроцесс, или истинное намагничивание, - одно из важнейших проявлений магнитных свойств магнитоупорядоченных систем. Механизм этого явления связан прежде всего с влиянием внешнего магнитного поля на магнитное упорядочение в спиновой системе «на фоне» конкуренции между обменными взаимодействиями и тепловым движением. Возможность термодинамического или модельного описания парапроцесса позволяет установить количественные закономерности, которые нередко служат «ориентиром» при анализе и интерпретации экспериментальных данных о температурно-полевых зависимостях намагниченности магнетика, магнитотепловых явлениях, магнитострикции, фазовых переходах [1, 2].

В последние годы весьма интенсивно изучаются магнитные свойства малых частиц (см., напр., [3, 4]). Тем не менее вопрос о механизме парапроцесса в малых магнитных частицах остается сравнительно слабо изученным. Между тем нетривиальность этого вопроса непосредственно связана с отличительной особенностью данного класса магнитоупорядоченных систем - малым размером магнитных частиц. Ввиду этого обстоятельства можно заранее ожидать, что своеобразие конкуренции теплового движения с упорядочивающим влиянием обменных взаимодействий в ансамбле суперпарамагнитных частиц при наличии внешнего поля приводит к закономерностям парапроцесса, резко отличающимся от тех, которые характерны для обычных («массивных») частиц ферро-, ферри- или антиферромагнетиков.

Настоящая статья посвящена количественному описанию механизма парапроцесса в суперпарамагнитных частицах в рамках формализма, основанного на модели Ланжевена и теории молекулярного поля.

2. О механизме парапроцесса

Выявить основные особенности парапроцесса в суперпарамагнитных частицах проще всего на примере малых однодоменных частиц ферромагнетика, поскольку механизм парапроцесса в обычных ферромагнетиках достаточно хорошо изучен [5]. В этой связи будем считать вначале, что объектом рассмотрения является совокупность (невзаимодействующих) одинаковых однодоменных малых частиц ферромагнетика, находящихся в условиях, когда температуру T и внешнее магнитное поле H можно варьировать в достаточно широких пределах.

При качественном рассмотрении механизма парапроцесса необходимо, очевидно, учесть прежде всего, что в отличие от случая «массивной» частицы упорядочивающее влияние внешнего магнитного поля **H** будет существенно ослабленным из-за поворотов магнитного момента μ частицы, вызванных тепловым движением. В роли «подмагничивающего» поля будет выступать фактически его средняя по времени проекция на направление «релаксирующего» момента частицы μ .

Каким бы малым, однако, ни оказалось это «подмагничивающее» поле, оно, добавляясь к обменному полю, действующему внутри суперпарамагнитной частицы, будет «помогать» ему в установлении (и поддержании) магнитного порядка. Иначе говоря, как и в случае обычной ферромагнитной частицы, магнитное поле **H** будет влиять на величину магнитного момента μ , хотя механизм этого влияния, как видим, существенно иной.

«Внешним» магнитным откликом совокупности суперпарамагнитных частиц на действие магнитного поля можно считать измеряемую на опыте ее удельную намагниченность σ (как, впрочем, и соответствующую ей дифференциальную магнитную восприимчивость $\chi_{\sigma} \equiv \partial (\sigma/M_0)/\partial H$). Эта величина, однако, не дает достаточно полного представления о механизме парапроцесса в суперпарамагнитных частицах, поскольку температурно-полевые зависимости намагниченности $\sigma(T, H)$ лишь косвенным образом отражают зависимости μ от T и H. Отметим для сравнения, что в случае обычного ферромагнетика зависимости $\sigma(T, H)$ исчерпывающим образом характеризуют парапроцесс при естественном условии, что они получены в области полей H, заведомо достаточных для завершения процессов смещения и вращения. В этом последнем случае, как известно, $\sigma = \mu/m$ (m — масса однодоменной частицы), тогда как для суперпарамагнетика $\sigma < \mu/m (\equiv M)$.

По этой причине следует, вообще говоря, различать две магнитные восприимчивости, характеризующие парапроцесс в суперпарамагнетике. Одна из них, $\chi_{\sigma} \equiv \partial(\sigma/M_0)/\partial H$, характеризует «внешний» магнитный отклик суперпарамагнетика на приложенное поле **H** и может быть непосредственно измерена на опыте. Другая, $\chi_M \equiv \partial(M/M_0)/\partial H$, характеризует рост «релаксирующего» магнитного момента μ в ходе парапроцесса. В случае обычного ферромагнетика эти две восприимчивости совпадают: $\chi_{\sigma} = \chi_M$.

3. Количественное описание парапроцесса

Для формального описания парапроцесса в системе суперпарамагнитных частиц воспользуемся традиционной моделью Ланжевена, дополнив ее теорией молекулярного поля - для учета температурной и полевой зависимости магнитного момента суперпарамагнитных частиц $\mu(H, T)$. Как было показано в работе [6], сочетание этих двух моделей дает возможность вполне удовлетворительно описать магнитные свойства суперпарамагнетика в широкой области температур, включая точку Кюри T_C , что особенно важно в связи с изучением парапроцесса.

Введем необходимые дополнительные обозначения. Пусть $N = \mu_0/\mu_B$ — магнитный момент суперпарамагнитной частицы при абсолютном насыщении, выраженный в магнетонах Бора; $M_0(\mu_0/m)$ удельная намагниченность частицы при абсолютном нуле температуры; $H' = kT_C/\mu_0$ — «характеристическое поле» для частицы с «номинальным» моментом μ_0 . Тогда, согласно [6, 7], будем иметь (на примере атомов со спином S = 1/2):

$$\left(\frac{\sigma}{M_0} = \frac{M}{M_0} L \left(\frac{T_C}{T} \frac{H}{H'} \frac{M}{M_0}\right),\tag{1}\right)$$

$$\left(\frac{\sigma}{M_0} = \frac{M}{M_0} N \frac{H'}{H} \left[\frac{1}{2} \frac{T}{T_C} \ln \frac{1 + M/M_0}{1 - M/M_0} - \frac{M}{M_0}\right].$$
 (2)

Возможность описания парапроцесса в суперпарамагнитных частицах хорошо видна уже из самой системы уравнений (1) и (2). Видно, в частности, что приведенные значения намагниченностей, σ/M_0 и M/M_0 , характеризующие парапроцесс, зависят как от температуры T, так и от поля H.

Уравнение (1) описывает собственно суперпарамагнитные свойства частицы. Принципиальное его отличие от классической версии Ланжевена связано именно с парапроцессом, поскольку $M = M(T, H) \neq M(T, H)$ \neq const. Формирование намагниченности M, соответствующей «релаксирующему» моменту $\mu(T, H),$ результат конкуренции двух различных факторов: во-первых, упорядочивающего действия обменных сил и внешнего поля Н и, во-вторых, разупорядочивающего влияния теплового движения. В уравнении (2) учтено [6], что суммарное эффективное поле H_{eff} , действующее на магнитноактивные атомы, складывается из обменного поля $H_{\rm exch} = \lambda \mu / m \; (\lambda - \mu)$ константа обменного взаимодействия) и проекции поля **H** на направление вектора μ , средняя величина которого, в согласии с (1), определяется функцией Ланжевена:

Вестник Московского университета. Серия 3. Физика. Астрономия. 1998. № 2

$$\langle H \rangle = H \cdot L \left(\frac{T_C}{T} \frac{H}{H'} \frac{M}{M_0} \right).$$
 (3)

Поскольку приведенная выше система уравнений содержит фактически только лишь безразмерные величины, с ее помощью можно выявить общие закономерности парапроцесса в системе суперпарамагнитных частиц. Варьируя величину N в достаточно широких пределах (она выступает в роли «параметра задачи»), можно рассмотреть характерные крайние случаи ультрамалых и «массивных» частиц, а также учесть влияние «разброса» размеров частиц на магнитные свойства системы в целом.

В связи с целями исследований наибольший интерес представляет, естественно, область температур вблизи точки Кюри. Есть и формальные ограничения на ширину рассматриваемой температурной области. Со стороны низких температур она ограничена так называемой «температурой блокировки», ниже которой частицы проявляют не суперпарамагнитные, а обычные ферромагнитные свойства [8]. Что касается температур выше точки Кюри, они представляют интерес лишь в пределах области существования «индуцированного суперпарамагнетизма» [7].

4. Особенности парапроцесса суперпарамагнитного типа

На рис. 1 показаны результаты численного моделирования парапроцесса в системе суперпарамагнитных частиц на основе уравнений (1) и (2). Расчетные зависимости даны для двух существенно различных значений параметра N, что позволяет наглядно выявить отличительные особенности парапроцесса в суперпарамагнитной частице (при N = 500) по сравнению со случаем ферромагнитной (при $N = 10^5$).

Как видно из рис. 1, общей для этих двух сравниваемых случаев оказывается зависимость приведенной спонтанной намагниченности частицы M_s/M_0 от температуры. В расчетах эти зависимости были получены путем экстраполяции функции $M(T, H)/M_0$ для каждой из температур $\tau (\equiv T/T_C)$ к полю H = 0. Такое совпадение вполне отражает ферромагнитную природу магнитного упорядочения внутри суперпарамагнитной частицы, спонтанный магнитный момент которой μ_s беспорядочно «релаксирует» в отсутствие магнитного поля под действием теплового движения. Отметим попутно, что в рамках выбранной модели зависимость M_s от температуры вблизи точки Кюри подчиняется известному закону $M_s^2 \sim (T_C - T)$ [5]:

$$\left(\frac{M_s}{M_0}\right)^2 = 3\left(1 - \frac{T}{T_C}\right). \tag{4}$$

Согласно результатам моделирования, в обоих случаях наложение поля H вызывает постепенное увеличение намагниченности M начиная с ее значения $M(T,0) = M_s(T)$. Увеличение намагниченности M «на фоне» исходного ее значения M_s , вызванное полем H, как раз и представляет собой парапроцесс. Область парапроцесса заштрихована на рис. 1.

Такая принципиально общая трактовка парапроцесса, одинаковая для ферромагнитных и суперпарамагнитных частиц, позволяет выявить следующие три отличительные особенности парапроцесса суперпарамагнитного типа.

Во-первых, «интенсивность» парапроцесса существенно ослабляется благодаря измельчению частиц (сравните зависимости приведенной намагниченности M/M_0 для двух различных значений N, показанные на рис. 1). Это обстоятельство можно пояснить при помощи формулы (3): чем мельче частицы ферромагнетика, тем меньше будет в тех же условиях среднее «подмагничивающее» поле $\langle H \rangle$.

Во-вторых, «индуцированная» полем H намагниченность σ для системы суперпарамагнитных частиц возникает одновременно с намагниченностью парапроцесса, количественной мерой которой является разность $M(T, H) - M_s(T)$. Если нет парапроцесса, то нет и создаваемой внешним полем намагниченности σ . При этом полевая намагниченность σ всегда «отстает» от «релаксирующей» намагниченности M, тогда как в случае однодоменной ферромагнитной («массивной») частицы эти две величины совпадают (см. рис. 1).

Наконец, в-третьих, зависимости намагниченностей σ и M от температуры при H = const для суперпарамагнетика не имеют «хвостов», столь характерных для ферромагнетика (см. рис. 1): обе они обрываются при некоторой критической температуре $T_{\text{crit}} (\geq T_C)$, где $\sigma = M = 0$. Эта температура зависит от поля H и соответствует фазовому переходу второго рода из суперпарамагнитного состояния в парамагнитное [7, 9].

5. Парапроцесс при температуре Кюри

Отличительные особенности парапроцесса в суперпарамагнитных частицах наилучшим образом выявляются при температуре Кюри (это относится, впрочем, и к обычным ферромагнетикам). В этом случае «ресурсы» магнитной системы максимальны, поскольку при $T = T_C$ и H = 0 спиновая система находится в полностью разупорядоченном (парамагнитном) состоянии, а интенсивность теплового движения еще не слишком велика.

«Отставание» намагниченности σ от M при температуре Кюри можно описать в рамках рассматриваемой модели с помощью весьма простых формул. Система уравнений (1) и (2) при $H \leq H'$ и $T = T_C$ имеет аналитическое решение. Раскладывая в этих уравнениях в ряд функцию Ланжевена и логарифм по малому параметру M/M_0 и удерживая в них вклады не старше четвертого порядка малости, будем иметь в итоге (случай малых полей)

$$\int \frac{\sigma}{M_0} = \frac{1}{3N} \left(\frac{H}{H'}\right)^3,\tag{5}$$

$$\left(\frac{M}{M_0} = \frac{1}{\sqrt{N}} \frac{H}{H'}.$$
(6)

Заметим для сравнения, что в случае ферромагнетика парапроцесс при температуре Кюри происходит в слабых полях существенно иным образом: намагниченность $\sigma(=M)$ обычно пропорциональна $H^{1/3}$ [5]. Еще более существенны отличия для восприимчивости при $T = T_C$ в области весьма слабых полей. Для суперпарамагнетиков, согласно (5) и (6), в этой области полей $\chi_{\sigma} \equiv \partial(\sigma/M_0)/\partial H \to 0$ при $H \to 0$, причем $\chi_M \equiv \partial(M/M_0)/\partial H = \text{const, тогда как для}$ ферромагнетиков $\chi_{\sigma}(=\chi_M) \to \infty$ при $H \to 0$ [5].

Приближение слабых полей для полевых зависимостей приведенных намагниченностей σ/M_0 и M/M_0 при $T = T_C$ показано на рис. 2 (штриховые линии), вместе с соответствующими точными решениями исходной системы уравнений (сплошные линии).

6. Заключение

В связи со сказанным выше несомненный интерес представляли бы экспериментальные исследования парапроцесса в суперпарамагнетиках, особенно при температурах в области точки Кюри. Наибольшие трудности будет представлять при этом, по-видимому, выбор достаточно удобных объектов исследования. В частности, весьма жесткие требования следует предъявлять к допустимому «разбросу» частиц по размерам.

Проще всего проверить на опыте приближение (5). Если, например, выбрать в качестве объекта исследований суперпарамагнитные частицы с температурой Кюри T_C и магнитным моментом N = 500, то характеристическое поле составит при этом лишь H' = 9 кЭ, а значит, приближение (5) можно считать приемлемым вплоть до полей $H' \cong 30$ кЭ (рис. 2). Существенно, что «разброс» суперпарамагнитных частиц по размеру, неизбежный в условиях опыта, не приводит к нарушению закона $\sigma \sim H^3$, как это непосредственно следует из (5). При этом вклад в σ , вносимый каждой из частиц, оказывается пропорциональным N^2 . Однако и в этом случае имеется ограничение на размеры частиц: они должны быть достаточно малыми, чтобы частицы обладали суперпарамагнитными, а не ферромагнитными свойствами.

Литература

- 1. Вонсовский С.В. Магнетизм. М., 1971.
- Белов К.П. // Вестн. Моск. ун-та. Физ. Астрон. 1993. № 1. С. 6 (Moscow University Phys. Bull. 1993. No. 1. Р. 1).
- 3. Diandra L. Leslie-Pelecky, Reuben D. Rieke. // Chem. Mater. 1996. 8, No 8. P. 1770.
- Shabes M.E. //, J. Magn. and Magn. Mater. 1991. 95, No. 3. P. 249.
- 5. Белов К.П. Магнитные превращения. М., 1959.
- 6. Авраамов Ю.С., Белова В.М., Николаев В.И., Стучебников В.М. // ФТТ. 1974. 16, № 10. С. 3180.
- 7. Николаев В.И., Бушина Т.А., Ким Ен Чан // Вестн. Моск. ун-та. Физ. Астрон. 1996. № 4. С. 107 (Moscow University Phys. Bull. 1996. No. 4. P. 93).
- 8. Петров Ю.И. Физика малых частиц. М., 1982.
- Nikolaev V.I., Bushina T.A., Kim Eng Chan // Proc. Russ.-Japan. Joint Semin. PMIMA. Moscow, 1996. P. 122.

Поступила в редакцию 10.09.97