Представленные на рис. 1, 2 данные наглядно демонстрируют трудности получения и обработки информации в реальном ПТИ-эксперименте. Очевидно, что преобладающее число отсчетов в спектре Al приходится на пик характеристического излучения, соответствующего энергии 1,55 кэВ. Действительно, согласно теоретическим оценкам, ожидаемая интенсивность ПТИ составляет менее 0,1% интенсивности характеристического излучения. Поэтому область характеристического излучения на рис. 2 не представлена. Кроме того, уровень фона оказался достаточно высоким. В этой связи корректное вычитание фона стало возможным лишь на основе сопоставления полного числа электронов, проходящих через мишень, для каждого из измерений.

Обсуждение результатов

Сравнение экспериментальных данных с теоретической кривой, представленной на рис. 2 и описывающей спектр интенсивности ПТИ на изолированном атоме [8], показывает, что они лишь качественно согласуются друг с другом (подчеркнем, что на рис. 2 представлены интенсивности излучений; для обычного ТИ эта величина описывается горизонтальной линией (!), но напомним, что вклад последнего в наблюдаемый поток излучения при выбранной в эксперименте геометрии оказывается несущественным). Учитывая трудные условия эксперимента с высоким уровенем фона, можно рассматривать полученные результаты как предварительные.

Тем не менее уже сейчас можно достаточно надежно отметить существенное различие между полученными в настоящей работе данными эксперимента с мишенями из сусального алюминия и результатами для алмазоподобного углерода [9]. Данные [9] указывают на сильное подавление ПТИ, в то время как в настоящей работе эффект подавления отсутствует. Это подтверждает исходное предположение, что пленка из сусального алюминия имеет структуру, близкую к аморфной. Вместе с тем различие в форме экспериментального спектра и теоретической кривой, по-видимому, указывает на присутствие в веществе мишени определенной доли поликристаллической фракции [8].

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант 96-02-17109).

Литература

- 1. Amus'ia M., Buimistrov V., Zon B. et al. Polarization Bremsstrahlung of Particles and Atoms. N.Y., 1992.
- 2. Korol A.V., Solov'ev A.V. // J. Phys. B. 1997. 30. P. 1105.
- Ter-Mikaelian M. High Energy Electromagnetic Processes in Condensed Media. N.Y., 1972.
- 4. Гарибян Г., Ши И. // ЖЭТФ. 1971. **61**. С. 930.
- 5. Барышевский В., Феранчук И. // ЖЭТФ. 1971. 61. С. 944.
- 6. Лапко В., Насонов Н. // ЖТФ. 1990. **60**. С. 160.
- 7. Насонов Н., Сафронов А. // ЖТФ. 1992. **62**. С. 1.
- 8. Nasonov N. // Abstract Int. Symp. RREPS-97. Tomsk, 1997.
- Blazhevich S., Chepurnov A., Grishin V. et al. // Phys. Lett. 1996. A 211. P. 309.
- Amosov K., Kalinin B., Naumenko G. et al. // Pis'ma Zh. Eksp. Teor. Fiz. 1996. 63. P. 145.

Поступила в редакцию 24.06.98

РАДИОФИЗИКА

УДК 537.523.74

ЭНЕРГЕТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ ЭЛЕКТРОНОВ В ПРИЭЛЕКТРОДНОЙ ПЛАЗМЕ ЕМКОСТНОГО ВЧ-РАЗРЯДА НИЗКОГО ДАВЛЕНИЯ

А. Ф. Александров, В. П. Савинов, И. Ф. Сингаевский

(кафедра физической электроники)

С помощью энергоанализатора заряженных частиц проведено изучение электронного энергетического спектра плазмы емкостного ВЧ-разряда низкого давления в Хе и Не. Проанализированы механизмы формирования электронного энергетического спектра плазмы, включающие приэлектродные электронные пучки. Показано, что аномальный нагрев электронов ксеноновой плазмы обусловлен пучково-плазменной неустойчивостью. Обнаружено резкое уменьшение нагрева электронов плазмы с увеличением ВЧ-напряжения, что связано с проявлением эффекта Рамзауэра.

Цель настоящей работы — экспериментальное изучение электронного энергетического спектра (ЭЭС) приэлектродной плазмы емкостного ВЧ-разряда (ЕВЧР) низкого давления в инертных газах

(Хе, Не) и механизмов формирования ЭЭС, связанных с приэлектродными электронными пучками.

Исследовался ЕВЧР с использованием плоских электродов диаметром D = 3 см и межэлектродным

Рис 1. Электронный энергетический спектр (Хе, p = 0, 1 Тор, f = 1 МГц) при $V_{\sim} = 600$ (a), 1000 (б) и 1200 В (в); экспериментальные данные настоящей работы (1), функции Дрювестейна (2) и Максвелла с $T_e = 2, 2$ эВ (3)

расстоянием d = 6 см. Один из электродов был заземлен. Давление рабочего газа p = 0, 1 Тор, частота ВЧ-поля f = 1 МГц. Выбор относительно низкой частоты поля обусловлен тем, что исследования временного хода физических процессов проводились в течение одного периода ВЧ-поля, а также стремлением свести к минимуму нагрев электронов плазмы осциллирующим приэлектродным потенциальным барьером и существенно снизить уровень электромагнитных наводок в измерительной системе.

Объектом изучения служила плазма в приэлектродной области заземленного электрода, которая в EBЧР создавалась с помощью высокоэнергетичного электронного пучка, приходящего от активного электрода. При этом длина свободного пробега электронов пучка, вычисленная с учетом только столкновений пучковых электронов с нейтральными частицами, существенно превышала протяженность разрядного промежутка. Таким образом, заметный энерговклад в разряд обеспечивался только при возбуждении пучково-плазменной неустойчивости, сопровождаемой генерацией вторичных CBЧ-полей [1] и резким сокращением длины энергетической релаксации пучка.

Обычно исследуется плазма центральных областей ЕВЧР, свойства которой близки к свойствам плазмы положительного столба тлеющего разряда постоянного тока.

Экспериментальное изучение приэлектродной плазмы, отличающейся более широким диапазоном изменения ее параметров, представляется весьма актуальным.

ЭЭС плазмы ЕВЧР исследовался с помощью 4-электродного энергоанализатора заряженных частиц с тормозящим электростатическим полем, размещавшегося позади заземленного электрода. Измерения проводились в квазистационарном режиме и

Рис. 2. Электронный энергетический спектр (Не, p=0,1 Тор, f=1,2 МГц, $V_{\sim}=600$ В); экспериментальные данные настоящей работы (1) и функция Максвелла с $T_e=6,5$ эВ (2)

с разрешением во времени посредством осциллографирования сигналов энергоанализатора. Типичные квазистационарные ЭЭС плазмы ЕВЧР в Хе при различных амплитудах приложенного ВЧ-напряжения V_{\sim} представлены на рис. 1. Квазистационарный ЭЭС приэлектродной плазмы ЕВЧР в Не приведен на рис. 2.

Полученные ЭЭС демонстрируют избыток «горячих» электронов по сравнению с квазиравновесными энергетическими распределениями. Отметим, что сравнение экспериментальных ЭЭС с равновесными в данном случае является некорректным вследствие сильно нелокального характера механизмов формирования ЭЭС. Вместе с тем определенная близость полученных ЭЭС к квазиравновесным

V_{\sim} , B	$n_e \cdot 10^{-9},$ cm^{-3}	<i>Т</i> _{е1} , В	$\begin{array}{c} T_{e \mathrm{eff}},\\ \mathbf{B} \end{array}$	$\omega_p \cdot 10^{-8}, \\ c^{-1}$	$\nu_e \cdot 10^{-8},$ \mathbf{c}^{-1}	$ \begin{aligned} \varkappa \nu_e \cdot 10^{-3}, \\ \mathrm{c}^{-1} \end{aligned} $	$ \nu_{ee1} \cdot 10^{-3}, \\ c^{-1} $	$\delta_1 \cdot \frac{10^{-8}}{c^{-1}},$	$\begin{array}{c} \delta_2 \cdot 10^{-8}, \\ c^{-1} \end{array}$	δ_1/ν_e	δ_2 / ν_e ,	L_1/d
600	1,5		4,3	22	13	10	4,9	0,93	1,8	0,07	0,14	2,7
800	2,5	_	3,9	28	11	9	9,5	1,4	2,2	0,13	0,2	2
1000	3,5	1,6	3,5	33	10,5	8,2	15	1,9	2,7	0,18	0,25	1,7
1200	9	2,2	3,0	54	7,2	5,9	35	4,7	4,3	0,65	0,6	0,7

Параметры физических условий в ЕВЧР в Хе (p = 0, 1 Тор, f = 1 МГц)

Использованы обозначения: n_e — концентрация электронов, $T_{e\,1}$ — температура группы «медленных» электронов; $T_{e\,eff} = (2/3) < \varepsilon_e >$, $<\varepsilon_e >$ — средняя энергия электронов, полученная из экспериментального ЭЭС; ω_p — электронная плазменная частота; ν_e — частота упругих столкновений электронов с атомами; $\varkappa \nu_e = (2m/M)\nu_e$ — характерная частота обмена энергией «медленных» электронов с атомами; m, M — массы электрона и атома; ν_{ee} — частота кулоновских e-e-столкновений; δ_1 — инкремент столкновительно-диссипативной неустойчивости [1]; δ_2 — инкремент бесстолкновительно-диссипативной неустойчивости [1]; δ_2 — инкремент бесстолкновительно-иссипативной неустойчивости [1]; δ_2 — инкремент столкновительно-иссипативной неустойчивости [1]; δ_2 — инкремент бесстолкновительно-иссипативной неустойчивости [1]; δ_2 — инкремент бесстолкновительно-иссипативно-иссипативно-иссипативно-иссипат

указывает на тенденцию к установлению соответствующих энергетических распределений. Для выяснения возможных механизмов формирования вышеупомянутых ЭЭС использованы наши данные о физических условиях в исследованном ЕВЧР в Хе (таблица).

Как видно из приведенных энергетических спектров (рис. 1), при пониженных ВЧ-напряжениях ($V_{\sim} < 1$ кВ) распределение «медленных» электронов близко к распределению Дрювестейна. В этих условиях ЭЭС демонстрирует аномальное обогащение плазмы «горячими» электронами и наличие двух групп электронов — «медленных» и «быстрых».

Изучение ЭЭС плазмы ЕВЧР в Хе показывает, что при увеличении ВЧ-напряжения резко уменьшается количество «горячих» электронов, происходит плавный переход двухгрупповой функции распределения электронов по энергиям с дрювестейновским распределением «медленных» электронов к одногрупповому квазимаксвелловскому распределению. Последнее отмечалось ранее в работе [2] при изучении ЕВЧР в Не и Аг и объяснялось относительно частыми кулоновскими столкновениями электронов, которые при $V_{\sim} > 1$ кВ имели место и в наших экспериментальных условиях для разряда в Хе (см. таблицу).

В работе [2] обогащение плазмы ЕВЧР «горячими» электронами объяснялось стохастическим механизмом нагрева электронов плазмы осциллирующим приэлектродным потенциальным барьером, обеспечивавшим удельный энерговклад в плазму $W \sim V_{\sim}^2 f^2$, т.е. резко возраставший с ростом ВЧ-напряжения и частоты поля.

В нашей работе на основании анализа характеристик физических условий в ЕВЧР, приведенных в таблице, предполагалось, что в отличие от работы [2] в исследованных условиях основным механизмом обогащения ЭЭС «горячими» электронами является пучково-плазменная столкновительно-диссипативная неустойчивость с инкрементом [1]

$$\delta_1 = \omega_p \left(rac{n_{eb}}{n_e} \, rac{\omega_p}{
u_e}
ight)^{1/2}.$$

Согласно данным таблицы, бесстолкновительная неустойчивость с инкрементом

$$\delta_2 = \omega_p \left(rac{n_{eb}}{2n_e}
ight)^{1/3}$$

в этих условиях практически не возбуждается вследствие выполнения условия $\delta_2/\nu_e < 1$.

С увеличением V_{\sim} значения величин δ_1/ν_e , δ_2/ν_e также возрастают. Это свидетельствует о тенденции перехода режима возбуждения пучково-плазменных неустойчивостей в бесстолкновительный и должно привести к значительному уменьшению нагрева электронов плазмы СВЧ-полями неустойчивостей, возбуждаемых пучками, что и наблюдалось экспериментально (см. рис. 1).

Возрастание величин δ_1/ν_e с ростом V_{\sim} объясняется, в частности, уменьшением частоты упругих столкновений электронов с атомами ν_e , что обусловлено эффектом Рамзауэра, ярко выраженным в Xe [3].

Экспериментальные данные относительно ЭЭС плазмы ЕВЧР в Не (рис. 2) показывают, что в этих условиях нагрев электронов плазмы был мал. Оценки на основании данных, аналогичных приведенным в таблице, для разряда в Не показали, что $\delta_1 \sim \delta_2 \sim \nu_e$. Отсюда следует, что в случае исследованного ЕВЧР в Не пучково-плазменные неустойчивости были очень слабо выражены.

Вышеупомянутая зависимость ЭЭС плазмы ЕВЧР в Xe от V_{\sim} с учетом низкого значения частоты поля указывает на то, что в отличие от работы [2] основным механизмом нагрева электронов у нас не мог быть стохастический. Наблюдавшийся аномальный нагрев электронов плазмы ЕВЧР в Xe (рис. 1,*a*), вероятнее всего, обусловлен СВЧ-полями пучково-плазменных неустойчивостей.

Согласно сказанному выше исследованный ЕВЧР в Хе можно рассматривать как новую разновидность ЕВЧР низкого давления — емкостной ВЧ-разряд со вторичным СВЧ-пробоем. По-видимому, с помощью оптимального подбора параметров ЕВЧР можно осуществить данный тип разряда и в других газах.

Литература

- Godyak V.A., Piejak R.B., Alexandrovich B.M. // Plasma Sources Sci. Technol. 1992. 1. P. 36.
- 3. *Браун С.* Элементарные процессы в плазме газового разряда. М., 1961.

Поступила в редакцию 22.07.98