АТОМНАЯ И ЯДЕРНАЯ ФИЗИКА

УДК 539.12

ОПРЕДЕЛЕНИЕ ЭЛЕКТРОМАГНИТНЫХ ФОРМФАКТОРОВ НУКЛОННЫХ РЕЗОНАНСОВ ИЗ ДАННЫХ ПО СЕЧЕНИЯМ $\gamma p \to \Delta^{++} \pi^-$ и $\gamma p \to p \rho^0$ РЕАКЦИЙ

Е. Н. Головач, В. С. Замиралов, Б. С. Ишханов, В. И. Мокеев, Дж. Рико^{*)}, М. Рипани^{*)}, Д. А. Родионов

$(HИИЯ \Phi)$

Развит метод извлечения формфакторов N^* из экспериментальных данных по сечениям эксклюзивных реакций $\gamma_{r,v}p \to \Delta^{++}\pi^-$ и $\gamma_{r,v}p \to p\rho^0$. Показано, что метод обеспечивает стабильное восстановление формфакторов с погрешностью около 10%, если ошибки измерения сечений указанных квазидвухчастичных реакций не превышают 1%.

Введение

В настоящее время наблюдается большой интерес к изучению свойств барионных резонансов, что во многом обусловлено введением в эксплуатацию крупного международного центра ТЈNAF в США [1, 2]. Сочетание 4π -детектора CLAS со светимостью 10^{34} см⁻² · с⁻¹ и непрерывного пучка электронов с энергией до 4 ГэВ открывает новые возможности изучения нуклонных резонансов в эксклюзивных каналах рождения под действием реальных и виртуальных фотонов. При этом особое значение приобретает изучение эксклюзивного канала с образованием двух пионов. При W > 1,7 ГэВ вклад этого канала становится основным в процессах взаимодействия реальных и виртуальных фотонов с протоном. Двухпионная мода распада становится доминирующей для N^* с массами свыше 1,5 ГэВ. Современные конституентные кварковые модели предсказывают существование большого числа резонансных состояний N* с массами в интервале 1,8-2,5 ГэВ [3-5], не обнаруженных, однако, экспериментально — так называемых missing-резонансов. Согласно моделям [3-5], связь missing-резонансов с каналами распадов, приводящих к формированию двух пионов в конечном состоянии, значительно больше, чем с каналами с образованием одного пиона. Таким образом, исследование процессов рождения двух пионов на протоне открывает значительные возможности поиска и исследования missing-резонансов.

Согласно систематике имеющихся экспериментальных данных по процессам электро- и фоторождения двух пионов на протоне [6, 7] основными механизмами реакции $(e, e'p\pi\pi)$ являются квазидвухчастичные процессы:

$$\begin{array}{l} \gamma_{r,v}p \to \Delta^{++}\pi^- \to (p\pi^+)\pi^-, \\ \gamma_{r,v}p \to \quad p\rho^0 \quad \to p(\pi^+\pi^-), \end{array}$$
(1)

где индексы r, v означают реальные и виртуальные фотоны. Соответственно возникает необходимость

разработки методов извлечения электромагнитных формфакторов $A_{1/2}$, $A_{3/2}$, $C_{1/2}$ резонансных состояний N^* из экспериментальных данных по квазидвухчастичным процессам (1). Исходными экспериментальными данными являются сечения процессов с образованием ($p\pi^+\pi^-$)-системы в конечном состоянии, из которых определяются сечения квазидвухчастичных реакций (1). Методы определения сечений квазидвухчастичных процессов являются предметом самостоятельного исследования, выходящего за рамки настоящей работы.

В работе [8] развита модель описания дифференциальных сечений реакций $\gamma_{r,v}p \to \Delta^{++}\pi^-$ и $\gamma_{r,v}p \to p\rho^0$. Эта модель была использована в качестве основы для изучаемого в настоящей статье метода определения электромагнитных формфакторов N^* из данных по сечениям квазидвухчастичных реакций.

Описание метода

В модели [8] дифференциальные сечения описываются совокупностью процессов возбуждения N^* во входном канале γp и их последующего распада в конечные состояния $\Delta^{++}\pi^-$ и $p\rho^0$, а также нерезонансными процессами, приводящими к формированию $\Delta^{++}\pi^-$ и $p\rho^0$ систем в конечном состоянии. Для $\Delta^{++}\pi^-$ -канала нерезонансные механизмы описываются совокупностью борновских членов [9] с учетом эффектов взаимодействия в начальном и конечном состояниях [10]. Нерезонансные процессы в $p\rho^0$ -канале описываются в приближении дифракционного рассеяния мезона на протоне [11].

Электромагнитные формфакторы $A_{1/2}(Q^2)$, $A_{3/2}(Q^2)$, $C_{1/2}(Q^2)$ резонансных состояний N^* рассматриваются как свободные параметры, и их величины определяются в фитирующей процедуре из условия наилучшего воспроизведения экспериментальных данных по сечениям реакций

^{*)} Istituto Nazionale di Fisica Nucleare, Sez. di Genova, Genova, Italia.

 $\gamma_{r,v}p \to \Delta^{++}\pi^-, \ \gamma_{r,v}p \to p\rho^0$. Для проведения процедуры фитирования была разработана компьютерная программа на основе модуля MINUIT [12]. Фитирующая функция использует описанную в [9] модель, связывающую фитируемые параметры формфакторы $A_{1/2}, \ A_{3/2}, \ C_{1/2}$ — с измеряемыми сечениями квазидвухчастичных процессов $\gamma_{r,v}p \to \Delta^{++}\pi^-\gamma_{r,v}p \to p\rho^0$.

Процедура фитирования и результаты

В настоящее время точность экспериментальных данных по сечениям реакций $\gamma_{r,v}p \rightarrow \Delta^{++}\pi^-$ и $\gamma_{r,v}p
ightarrow p
ho^0$ не позволяет осуществить однозначное определение формфакторов N*, вносящих вклад в этот процесс. Поэтому нами были рассчитаны в рамках модели [8] дифференциальные сечения $d\sigma(W, heta)/d\Omega$ реакций $\gamma_r p o \Delta^{++}\pi^-$ и $\gamma_r p o p
ho^0,$ где W — энергия сталкивающихся частиц, θ — угол эмиссии π^- или ρ^0 -мезона в СЦМ. В табл. 1 приведены N^* , включенные в расчет, и значения спиральных амплитуд A1/2, А3/2 в фотонной точке. Относительный вклад резонансов в сечение реакции определяется величинами $\Gamma_{\gamma p}(\Gamma_{\Delta \pi}/\Gamma_{\rm tot})$ и $\tilde{\Gamma}_{\gamma p}(\Gamma_{p \rho}/\Gamma_{\rm tot}),$ где $\Gamma_{\gamma p}$, $\Gamma_{\Delta \pi}$, $\Gamma_{p\rho}$ — парциальные ширины распадов резонансных состояний N^* по каналам γp , $\Delta^{++}\pi^-$, $p
ho^0$, а $\Gamma_{
m tot}$ — полная ширина. Включенные в расчет N* охватывают все резонансы со статусом «* * * *» [13], для которых имеется надежная информация по перечисленным выше парциальным

Таблица 1

Параметры $N^st,$ использованные в расчете
квазидвухчастичных каналов $\gamma p o \Delta^{++} \pi^-$
и $\gamma p ightarrow p ho^{ m o}$ [13]

Резонанс	$A_{1/2} \ (\Gamma i B^{-1/2})$	$A_{3/2} \ (\Gamma \mathfrak{I} \mathbb{B}^{-1/2})$	$\Gamma_{\gamma p}(\Gamma_x/\Gamma_{ m tot}) \ ({ m k} { m 9B})$		
канал $\gamma p \to \Delta^{++} \pi^-; \ \Gamma_x = \Gamma_{\Delta \pi}$					
P ₁₁ (1440)	-0,072		35		
D ₁₃ (1520)	-0,022	0,163	12		
$S_{11}(1650)$	0,052		7		
D ₁₅ (1675)	0,018	0,018	8		
$F_{15}(1680)$	-0,014	0,136	33		
$S_{31}(1620)$	0,030		14		
D ₃₃ (1700)	0,114	0,091	300		
$F_{35}(1905)$	0,037	-0,031	14		
F ₃₇ (1950)	-0,085	-0,101	75		
канал $\gamma p ightarrow p ho^0; \ \Gamma_x = \Gamma_{p ho}$					
$F_{15}(1680)$	-0,014	0,136	33		
$P_{13}(1720)$	0,027	-0,026	60		
D ₃₃ (1700)	0,114	0,091	280		
$F_{35}(1905)$	0,037	-0,031	50		
F ₃₇ (1950)	-0,085	-0,101	15		

ширинам и которые дают заметный вклад в соответствующий канал, т.е. с $\Gamma_{\gamma p}(\Gamma_{\Delta \pi}/\Gamma_{tot}) > 5$ кэВ и $\Gamma_{\gamma p}(\Gamma_{p \rho}/\Gamma_{tot}) > 10$ кэВ. Рассчитанные таким образом сечения рассматривались как квазиданные, из которых рассчитывались величины формфакторов с помощью фитирующей процедуры.

Таблица 2

Результаты восстановления формфакторов $A_{1/2}$ и $A_{3/2}$ из			
данных по дифференциальным сечениям для каналов			
$\gamma p o \Delta^{++} \pi^-$ и $\gamma p o p ho^{0}$ при разных значениях			
дисперсии σ ($A_{ m in}$ — начальное, $A_{ m calc}$ — восстановленное			
значение формфактора)			

Резонанс, спиральная амплитуда	$egin{aligned} rac{ A_{ m in}-A_{ m calc} }{A_{ m in}} \ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$egin{aligned} rac{ A_{ m in}-A_{ m calc} }{A_{ m in}} \ (\%) \ \mbox{при} \ \sigma=5\% \end{aligned}$	$\Gamma_{\gamma p}(\Gamma_x/\Gamma_{ m tot}) \ ({ m k}{ m 3B})$			
канал $\gamma p \to \Delta^{++} \pi^-; \ \Gamma_x = \Gamma_{\Delta \pi}$						
$P_{11}(1440), A_{1/2}$	2,5	49	35			
$D_{13}(1520), A_{1/2}$	15	73	4,8			
$D_{13}(1520), A_{3/2}$	0	2	120			
$S_{11}(1650), A_{1/2}$	24	340	7			
$D_{15}(1675), A_{1/2}$	26	26	5,3			
$D_{15}(1675), A_{3/2}$	1	150	5,3			
$F_{15}(1680), A_{1/2}$	2	100	1,3			
$F_{15}(1680), A_{3/2}$	3	0,5	33			
$S_{31}(1620), A_{1/2}$	20	84	14			
$D_{33}(1700), A_{1/2}$	0,1	14	180			
$D_{33}(1700), A_{3/2}$	2	21	105			
$F_{35}(1905), A_{1/2}$	21	0,3	14			
$F_{35}(1905), A_{3/2}$	6	73	14			
$F_{37}(1950), A_{1/2}$	5	43	30			
$F_{37}(1950), A_{3/2}$	0,1	5	45			
канал $\gamma p o p ho^0; \ \Gamma_x = \Gamma_{p ho}$						
$F_{15}(1680), A_{1/2}$	4	250	1,3			
$F_{15}(1680), A_{3/2}$	0,3	2	33			
$P_{13}(1720), A_{1/2}$	0	2	48			
$P_{13}(1720), A_{3/2}$	3	20	16			
$D_{33}(1700), A_{1/2}$	0,2	0,4	168			
$D_{33}(1700), A_{3/2}$	0,9	6	100			
$F_{35}(1905), A_{1/2}$	1	10	50			
$F_{35}(1905), A_{3/2}$	0,6	7	50			
$F_{37}(1950), A_{1/2}$	0,1	0,4	6			
F37(1950), A2/2	0.3	4	9			

Здесь величина $\Gamma_{\gamma p}$ взята для состояния N^* с соответствующей спиральностью.

Извлечение формфакторов осуществлялось как по квазиданным, не подвергавшимся статистическому возмущению, так и по квазиданным, распределенным по нормальному закону вблизи рассчитанной величины сечения с дисперсией $\sigma = 0,5\%$ и 5%. В качестве начальных значений восстанавливаемых формфакторов $A_{1/2}$, $A_{3/2}$ были взяты величины, лежащие в пределах 30% относительно «истинных», приведенных в табл. 1 значений.

При восстановлении формфакторов из невозмущенных квазиданных полученные величины в точности совпадают со своими начальными значениями. Это свидетельствует об устойчивости процедуры восстановления формфакторов N*. Точность восстановления формфакторов при наличии статистических возмущений квазиданных характеризуется относительными ошибками восстановленных величин формфакторов (табл. 2). Как следует из данных табл. 2, при флуктуации величин сечений с $\sigma = 0,5\%$ формфакторы восстанавливаются с хорошей точностью (погрешность ±10%). Для резонансов, вносящих больший вклад в сечение процесса (большая величина $\Gamma_{\gamma p}(\Gamma_{\Delta \pi}/\Gamma_{\rm tot})$ или $\Gamma_{\gamma p}(\Gamma_{p \rho}/\Gamma_{\rm tot})$), точность формфакторов оказывается выше. При возрастании возмущения до 5% для реакции $\gamma_r p \to \Delta^{++} \pi^$ точность восстановления формфакторов оказывается ниже, чем приемлемо для извлечения информации об их структуре. В канале $\gamma_r p \rightarrow p \rho^0$ с погрешностью менее 10% восстанавливаются лишь формфакторы наиболее сильно возбуждаемых резонансов $D_{33}(1700)$ и $F_{35}(1905)$. Таким образом, для определения формфакторов N^* с погрешностью не менее 10% приемлемые ошибки измерения сечений квазидвухчастичных каналов не должны превышать 1%.

Литература

- Walecka J.D. // AIP Conf. Proc. No. 296 (Newport News, Virginia, 1992). N.Y., 1993. P. 87.
- Domingo J.D., Carlini R.D., Mecking B.A., Mougeu J.Y. // Ibid. P. 25.
- 3. Capstics S., Roberts W. // Phys. Rev. 1994. D49. P. 4570.
- 4. Koniuk R., Isgur N. // Phys. Rev. 1980. D21. P. 1868.
- 5. Koniuk R. // Nucl. Phys. 1982. B195. P. 452.
- Struczinski W., Dittman P., Eckardt V. et al. // Nucl. Phys. 1976. B108. P. 45.
- Ballam J., Chadvick G.B., Gearhart R. et. al. // Phys. Rev. 1972.
 D5. P. 545.
- 8. Головач Е.Н., Замиралов В.С., Ишханов Б.С. и др. // Препринт НИИЯФ МГУ 97-27/478. М., 1997.
- 9. Stichel P., Scholtz M. // Nuovo Cimento. 1964. 34. P. 1381.
- 10. Gottfried K., Jackson J.D. // Ibid. P. 736.
- 11. Söding P. // Phys. Lett. 1966. 19. P. 702.
- James F. MINUIT // CERN Program Library Long Writeup. D506. CERN, Geneva, 1994.
- 13. Particle Data Group // Phys. Rev. 1996. D54. P. 2950.

Поступила в редакцию 13.10.97

РАДИОФИЗИКА

УДК 621.396.96

ПОВЫШЕНИЕ ЧУВСТВИТЕЛЬНОСТИ РАДИОМЕТРИЧЕСКИХ СИСТЕМ ПОСРЕДСТВОМ ПОСЛЕДЕТЕКТОРНОЙ ЦИФРОВОЙ ОБРАБОТКИ СИГНАЛА

В. В. Гладун, А. И. Дубина, Ю. А. Пирогов

(кафедра радиофизики)

Описывается цифровой метод обработки последетекторного сигнала, принципиально позволяющий получать максимальную чувствительность радиометрических систем. Метод позволяет также адаптировать радиометрическую систему для работы в устройствах радиовидения с фазированными антенными решетками при сканировании наблюдаемых сцен в реальном времени.

Чтобы обнаружить радиометром малые изменения мощности теплового излучения, необходимо подавить влияние собственных шумов радиометрического приемника, которые в большинстве случаев во много раз больше измеряемого сигнала. Значительно усложняет эту задачу наличие низкочастотного фликкер-шума. Чтобы предотвратить отклонение показаний от истинного значения, в широко известных ехемах радиометров с аналоговым накоплением сигнала обычно добавляют дополнительные устройства, которые увеличивают шум приемника (корреляционный радиометр), или калибруют приемник опорным сигналом в процессе измерений, выключая на время калибровки сигнальный канал, что приводит к потере принимаемой мощности (модуляционная схема), или точно калибруют лишь узкую полосу частотной характеристики приемника, теряя при этом точность измерений из-за неучтенных флуктуаций остальной части спектра (схема с пилот-сигналом). Это приводит к тому, что чувствительность подобных схем в несколько раз ниже, чем у идеального радиометра.

Более эффективно использовать мощность входного сигнала и повысить точность измерений нам удалось, накапливая не сам входной сигнал, а его флуктуации. Это реализуется путем оцифровки усиленного и продетектированного сигнала с последую-