также записанным в виде фурье-преобразования. Анализ связи классической и квантовой функции распределения, проведенный в работе [8], показывает, что это представление справедливо для любых замкнутых макросистем с перемешиванием. Таким образом, между квантовым и классическим представлениями нет противоположности, а существует дополнительность.

Но все же главное удобство аппарата квантовой механики не в формальной замене переменных. Введя вероятностное пространство и функцию распределения Φ на выбранном пространственно-временном множестве Ω_{τ} , можно увидеть, что Φ — единственная не случайная функция внутренних переменных. Физические же или измеряемые характеристики (плотность, энергия, импульс, момент) не случайны только в среднем по всему пространственно-временному множеству, на котором определена функция распределения Φ .

Если представить эти характеристики, например энергию, в виде интеграла Лебега–Стильтьеса:

$$E = \int\limits_{\Omega_{\tau}} H(\xi, \tau) \, d\Phi,$$

как предлагал еще А.М. Обухов [4], то $H(\xi, \tau)$ оказывается зависящей от вида распределения $\Phi(\xi, \tau)$. В теории турбулентности этот факт прослеживается в зависимости всех вводимых коэффициентов от структуры турбулентности, т.е. от вида Φ , а это нам заранее неизвестно, известны лишь законы сохранения. Значит, нужно выразить характеристики макросистемы с помощью операторов, действующих на возможное распределение вероятности. Именно это и делает квантовая механика. Вид этих операторов должен соответствовать динамическому представлению при предельном переходе.

Заключение

Таким образом, операторные вероятностные уравнения для любого масштаба описания не могут не быть подобны уравнению Шрёдингера, которое выражает законы сохранения, действующие в замкнутой макросистеме. Такое описание не заменяет, а дополняет динамическое, а методы и приемы вероятностного описания, по-видимому, универсальны для любых масштабов и поэтому могут быть использованы в климатических исследованиях.

Литература

- 1. Монин А.С. Введение в теорию климата. Л., 1982.
- Юшков В.П. // Вестн. Моск. ун-та. Физ. Астрон. 1996. № 1. С. 69 (Moscow University Phys. Bull. 1996. No. 1. Р. 57).
- 3. *Dobrovolskii S.G.* Global Climatic Changes in Water and Heat Transfer-Accumulation Processes. Amsterdam, 1992.
- 4. Обухов А.М. Турбулентность и динамика атмосферы. Л, 1985.
- Пригожин И. От существующего к возникающему. М., 1985.
- 6. Климонтович Ю.Л. Статистическая физика. М., 1985.
- Шрёдингер Э. Избранные труды по квантовой механике. М., 1976.
- 8. Kolovsky A.R. // Europhys. Lett. 1994. 27, No. 2. P. 79.

Поступила в редакцию 21.05.97

УДК 550.3

УЧЕТ ТЕНЗОРА ПРИСОЕДИНЕННЫХ МАСС В ЗАДАЧЕ О ДВИЖЕНИИ ТВЕРДОГО ЯДРА ЗЕМЛИ

С. Л. Пасынок

(ГАИШ)

Для гармонических колебаний твердого ядра Земли в произвольном направлении был вычислен тензор присоединенных масс. Учет тензора присоединенных масс приводит к увеличению периодов свободных колебаний внутреннего ядра Земли примерно на 1 час. При некоторых значениях плотности ядра периоды колебаний близки к экспериментальным периодам, полученным Д. Е. Смайли. Расщепление экспериментальных частот хорошо интерпретируется как расщепление экваториальной моды свободных колебаний внутреннего ядра Земли в гравитационном поле несимметричной оболочки при наличии у последней соответствующего квадрупольного момента.

1. Постановка задачи

В работе [1] были исследованы свободные колебания внутреннего ядра Земли в произвольном направлении. Задача решалась в постановке Буссе–Шлихтера [2] с дополнительным учетом неравновесной части гравитационного поля Земли. Однако для окончательного решения задачи требовалось знание величины тензора присоединенных масс, который в численных оценках [1] был положен равным нулю. Необходимость учета тензора присоединенных масс обусловлена тем, что часть кинетической энергии ядра передается жидкости и поэтому для его вычисления необходимо решить соответствующие уравнения гидродинамики. Для полярных колебаний эта задача была решена Буссе в предположении симметрии движения жидкости относительно оси вращения [2]. Однако для колебаний в произвольном направлении расчетов проведено не было. Решению этой задачи и посвящена настоящая работа. Согласно [2] поле скоростей в жидком ядре при предположении об идеальности жидкости является решением системы уравнений:

$$\frac{\partial}{\partial t} \operatorname{rot} \mathbf{V} = 2\Omega \frac{\partial \mathbf{V}}{\partial z}, \qquad (1)$$
$$\operatorname{div} \mathbf{V} = 0,$$

где V — вектор скорости, Ω — угловая скорость вращения. Граничные условия для идеальной жидкости заключаются в том, что нормальная составляющая скорости на ограничивающей жидкость поверхности должна равняться нормальной составляющей скорости самой этой поверхности [3]. Применительно к нашему случаю это означает, что

где **n** — вектор нормали к поверхности ядра, r_E — радиус границы внешнего ядра, r_I — радиус границы твердого ядра; а (**nV**_I) — нормальная составляющая скорости точки поверхности твердого ядра, расположенной в направлении **n**. Согласно теореме разложения Гельмгольца [4] решение системы (1) с граничными условиями (2) будем искать в виде

$$\mathbf{V} = -\nabla \varphi + \operatorname{rot} \mathbf{A},\tag{3}$$

где φ — скалярный, а **A** — векторный потенциалы скоростей. В работах [1, 2] было показано, что периоды свободных колебаний земного ядра малы по сравнению с периодом вращения Земли вокруг оси. Поэтому поиск решения уравнений можно провести методом последовательных приближений. При этом будем говорить, что приближенное решение имеет k-й порядок, если при его получении учитывались члены по Ω до порядка k включительно.

2. Нулевое приближение

В нулевом приближении система (1) с граничными условиями (2) приобретает вид

$$\Delta \varphi^{(0)} = 0, \quad (\mathbf{n} \nabla \varphi^{(0)})_{r=r_E} = 0, -(\mathbf{n} \nabla \varphi^{(0)})_{r=r_I} = (\mathbf{n} \mathbf{V}_I).$$
(4)

Эта задача была решена Лэмбом [5]. Приведем решение задачи Лэмба в следующих обозначениях (согласно [6]): малые латинские индексы i, j, k изменяются от 1 до 3; по дважды повторяющимся индексам производится суммирование от 1 до 3 (правило суммирования Эйнштейна); ε_{ijk} — антисимметричный по любой паре индексов символ Леви-Чивита [7] с $\varepsilon_{123} = +1$; симметричная и бесследовая (STF) часть тензора M_{ijk} обозначается $M_{\langle ijk \rangle}$ [8]; $f_{,i} = \partial f / \partial x^i$; $r^2 = x^2 + y^2 + z^2 = x_i x_i$; $n_i = x_i / r$.

В этих симметричных обозначениях (4) примет следующий вид: $\varphi_{,ii}^{(0)} = 0$; $n_i \varphi_{,i}^{(0)} = 0$ при $r = r_E$; $-n_k \varphi_{,k}^{(0)} = V_{Ij} n_j$ при $r = r_I$. Граничные условия диктуют решение в виде

$$\varphi^{(0)} = \left(\frac{M_i^{(0)}}{r^2} + rm_i^{(0)}\right) n_i,
V_i^{(0)} = -m_i^{(0)} - \frac{M_i^{(0)} - 3M_k^{(0)}n_k n_i}{r^3},$$
(5)

где $m_i^{(0)}$ и $M_i^{(0)}$ — функции времени, определяемые из граничных условий. Подставляя (5) в (2) и приводя подобные члены, получим

$$M_k^{(0)} = rac{V_{Ik} r_E^3 r_I^3}{2(r_E^3 - r_I^3)}, \quad m_k^{(0)} = rac{V_{Ik} r_I^3}{r_E^3 - r_I^3}.$$

Согласно [2] массовая плотность тензора присоединенных масс α_{ik} определяется условием

$$\frac{dT_E}{dt} = \alpha_{jk} V_{Ij} \frac{dV_{Ik}}{dt} m_I, \qquad (6)$$

где

$$T_E = \sigma_E \int \frac{V^2}{2} d\tau \tag{7}$$

— кинетическая энергия жидкости, m_I — масса внутреннего ядра Земли, σ_E — плотность однородного жидкого ядра, $d\tau$ — элемент объема, а интегрирование проводится по всему объему, занятому жидкостью.

Подставляя (5) в (7) с учетом (6) в нулевом приближении, получаем

$$\alpha_{kp}^{(0)} = \frac{\sigma_E}{\sigma_I} \frac{2r_I^3 + r_E^3}{2(r_E^3 - r_I^3)} \delta_{kp}, \qquad (8)$$

где δ_{kp} — символ Кронекера.

Формула (8) совпадает с результатом Лэмба, который является нулевым приближением для нашего случая и соответствует невращающейся жидкости.

3. Первое приближение

Решение ищем в виде

$$V_i = V_i^{(0)} + V_i^{(1)} = V_i^{(0)} - \nabla_i \phi^{(1)} + \varepsilon_{ijk} \nabla_j A_k^{(1)}, \quad (9)$$

где $\operatorname{rot}_i A = \varepsilon_{ijk} \nabla_j A_k$. Введем обозначения: $\widetilde{\phi} \equiv \overline{M}_k n_k / r^2$, где $\overline{M}_k = \int M_k^{(0)}(t) dt$. Такой интеграл существует, если V_{Ik} — периодическая функция времени. Подставляя (9) в первое из уравнений (1), придем к уравнению

$$\frac{\partial}{\partial x_i} \left(\frac{\partial A_k^{(1)}}{\partial x_k} + 2\Omega \frac{\partial \widetilde{\phi}}{\partial z} \right) = \Delta A_i^{(1)}. \tag{10}$$

Согласно (3) векторный потенциал $A_i^{(1)}$ определен с точностью до градиента некоторой калибровочной функции ψ . Выберем эту функцию таким образом, чтобы выполнялось условие

$$\Delta A_i^{(1)} = 0. \tag{11}$$

Вестник Московского университета. Серия 3. Физика. Астрономия. 1999. №1

Такой выбор возможен, так как в левой части (10) стоит градиент некоторой функции. Тогда с учетом вида ϕ получим

$$A_{k}^{(1)} = \left(0, 0, \frac{-2\Omega \widetilde{M}_{p} n_{p}}{r^{2}}\right).$$
 (12)

Потенциал $\phi^{(1)}$ согласно виду граничных условий (2) ищем в виде $\phi^{(1)} = rm_k^{(1)}n_k + M_k^{(1)}n_k/r^2$. Подставим это выражение и (12) в (9), а затем получившуюся формулу — в граничные условия (2). После приведения подобных слагаемых придем к результату

$$m_k^{(1)} = 0, \quad M_k^{(1)} = \Omega \varepsilon_{ijz} \widetilde{M}_j.$$
 (13)

Подставляя (13) и (12) в (9) и приводя подобные члены, получим следующую формулу для скорости:

$$V_i^{(1)} = -\frac{3\Omega}{r^3} \left(\varepsilon_{ijz} \widetilde{M}_j - \varepsilon_{pjz} \widetilde{M}_j n_p n_i - 2\varepsilon_{ijz} n_j \widetilde{M}_k n_k \right).$$
(14)

После подстановки (9) с учетом (14) в (7) получим, что составляющая кинетической энергии первого порядка по Ω равна

$$T^{(1)} = \sigma_E \int V_k^{(0)} V_k^{(1)} \, d au = 0 \, .$$

Следовательно, на основе (6)

$$\alpha_{kp}^{(1)} = 0. (15)$$

4. Второе приближение

Во втором приближении скорость ищем в виде

$$V_i = V_i^{(0)} + V_i^{(1)} + V_i^{(2)}.$$
 (16)

Подставляя (16) в (1), получим

$$\frac{\partial}{\partial t} \varepsilon_{ijk} \nabla_j V_k^{(2)} = 2\Omega \frac{\partial}{\partial z} (\varepsilon_{ijk} \nabla_j A_k^{(1)} - \nabla_i \phi^{(1)}), \quad (17)$$

$$\Delta V_k^{(2)} = 0,$$

откуда следует, что решение можно искать в виде

$$V_i^{(2)}=2\Omegarac{\partial \, \widetilde{A}_i^{(1)}}{\partial z}+\widetilde{V}_i^{(2)},$$

где $\,\widetilde{V}_i^{(2)} = -
abla_i \phi^{(2)} + arepsilon_{ijk}
abla_j A_k^{(2)}, \; \widetilde{A}_i^{(1)} = \int A_i^{(1)}(t) \, dt$.

Тогда задача для $A_i^{(2)}$ совпадает с (10), если за-менить в (10) $A_i^{(1)}$ на $A_i^{(2)}$ и $\phi^{(0)}$ на $\phi^{(1)}$, где $\widetilde{\phi}^{(1)} = \widetilde{M}_k^{(1)} n_k/r^2$, а $\widetilde{M}_k^{(1)} = \int M_k^{(1)}(t) dt$. Так как за-дача (10) уже решена, то выпишем ответ без промежуточных пояснений:

$$A_{k}^{(2)} = \left(0, 0, \frac{-2\Omega \widetilde{M}_{p}^{(1)} n_{p}}{r^{2}}\right) = \left(0, 0, \frac{-2\Omega^{2} \varepsilon_{ijz} \widetilde{\widetilde{M}}_{j} n_{i}}{r^{2}}\right)$$
(18)

гле

$$\widetilde{\widetilde{M}}_k = \iint M_k^{(0)}(t) \, dt^2. \tag{19}$$

Вид гармонической функции определялся из граничных условий (2) и был получен после подстановки в них (16) с учетом (18) в виде

$$\begin{split} \phi^{(2)} &= \frac{M_k^{(2)} n_k}{r^2} + \frac{J_{\langle ijk \rangle}^{(2)} n_i n_j n_k}{r^4} + r^3 m_{\langle ijk \rangle}^{(2)} n_i n_j n_k, \quad (20) \\ \text{где} \quad M_i^{(2)} &= -(\Omega^2/5) (7 \widetilde{\widetilde{M}}_z \delta_{iz} + \widetilde{\widetilde{M}}_i), \quad J_{\langle ijk \rangle}^{(2)} = 3\Omega^2 \times \\ &\times \widetilde{\widetilde{M}}_{\langle i} \delta_j^z \delta_{k \rangle}^z r_E^2 r_I^2 (3 r_E^5 - r_I^5) / (3 r_E^7 - r_I^7), \quad m_{\langle ijk \rangle}^{(2)} = 12\Omega^2 \times \\ &\times \widetilde{\widetilde{M}}_{\langle i} \delta_j^z \delta_{k \rangle}^z (r_E^2 - r_I^2) / (3 r_E^7 - r_I^7). \end{split}$$

Выражение для составляющей кинетической энергии второго порядка по Ω было получено подстановкой (16) в (7):

$$T^{(2)} = \sigma_E \int \left(\frac{V^{(1)^2}}{2} + V_k^{(0)} V_k^{(2)} \right) d\tau.$$
 (21)

Используя условие ортогональности сферических функций различных степеней и подставляя (16) в (21) с учетом (18)-(20) и (14), получим следующие выражения:

$$\begin{aligned} \alpha_{11}^{(2)} &= \alpha_{22}^{(2)} = \frac{29}{10} \frac{\Omega^2}{\chi^2} \frac{r_E^3}{r_E^3 - r_I^3} \frac{\sigma_E}{\sigma_I}, \\ \alpha_{33}^{(2)} &= -\frac{12}{10} \frac{\Omega^2}{\omega_p^2} \frac{r_E^3}{r_E^3 - r_I^3} \frac{\sigma_E}{\sigma_I}, \\ \alpha_{ij}^{(2)} &= 0 \quad \text{при} \quad i \neq j. \end{aligned}$$
(22)

При вычислении (22) было также учтено, что согласно работе [1] координаты центра твердого ядра Земли изменяются по закону

$$x = A \cos \chi t, \quad y = A \sin \chi t, \quad z = B \cos \omega_p t.$$

5. Численные результаты

В работе [1] были получены формулы для вычисления частот собственных колебаний ядра Земли в произвольном направлении:

$$\omega_j^{(k)} = \chi_k + (-1)^j \frac{(6A_{22} + (-1)^j A_{20})\Sigma}{2\chi_k r_E^3 A_e},
 \omega_3 = \omega_p - \frac{A_{20}\Sigma}{\omega_p r_E^3 A_p},$$
(23)

где A_{22} , A_{20} — коэффициенты разложения ано-мальной части гравитационного потенциала в ряд по сферическим функциям [1], индекс k принимает значения $\pm,~\chi_{\pm}=-\Omega'\pm\sqrt{\Omega'^2+\omega_e^2},~\Omega'=\Omega/A_e,$

$$\begin{split} \omega_p^2 &= (4/3A_p)\pi G\sigma_E \Sigma, \ \omega_e^2 &= (4/3A_e)(\pi G\sigma_E - \Omega^2) \Sigma, \\ G &-$$
 гравитационная постоянная, $\Sigma = 1 - \sigma_E/\sigma_I, \\ A_{e,p} &= 1 + (\sigma_E/\sigma_I) lpha_{e,p}, \ j = 1, 2, \ lpha_e &= lpha_{11} = lpha_{22}$ и $lpha_p &= lpha_{33}. \end{split}$

Влияние тензора присоединенных масс сказывается в том, что периоды увеличиваются (таблица). Периоды свободных колебаний ядра Земли обозначены согласно [1]. В первой строке приведены периоды, вычисленные без учета тензора присоединенных масс согласно [1], а во второй строке — с учетом тензора присоединенных масс для плотностей $\sigma_E = 12\,000$ кг/м³, $\sigma_I = 12\,597$ кг/м³. Экваториальная мода расщепилась на 4 гармоники $(T_1^{(+)}, T_2^{(+)}, T_1^{(-)}$ и $T_2^{(-)})$, причем за расщепление периода на две составляющие, отстоящие приблизительно на $\pm 0, 5$ ч от первоначального, ответственно вращение системы координат с периодом 24 ч, а за расщепление приблизительно $\pm 0,001$ ч — гравитационное поле несимметричной оболочки Земли.

Частоты, вычисленные по (23), зависят от средних плотностей твердого ядра и жидкого ядра. Периоды для плотностей $\sigma_E = 12\,000\,$ кг/м³, $\sigma_I = 12\,960\,$ кг/м³ приведены в третьей строке таблицы, а периоды для плотностей $\sigma_E = 12\,000$ кг/м³, $\sigma_I = 13\,072$ кг/м³ — в четвертой. В этом случае экваториальный период Т₃ совпадет с экспериментально полученным в [9] $T = 4,015 \pm 0,001$ ч в пределах точности измерений, а периоды $T_1^{(-)}$ и $T_2^{(-)}$ оказываются близкими к экспериментально полученным по данным сверхпроводящих гравиметров [9]: $3,5820\pm0,0008$ ч, $3,7677\pm0,0006$ ч. Средние периоды: $(T_1^{(-)} + T_2^{(-)})/2 = 3,642793$ и 3,6748 $\pm 0,0007$ ч хотя и близки, но не совпадают в пределах точности измерений. Однако средние частоты могут быть согласованы с помощью соответствующего выбора σ_E и σ_I . Так как точных данных об этих параметрах пока нет, то нельзя на этом основании отвергать возможность интерпретации периодов [9] как периодов собственных колебаний ядра Земли.

Периоды свободных колебаний внутреннего ядра Земли (в часах) для некоторых значений плотности твердого ядра Земли σ_I при $\sigma_E = 12\ 000\ {\rm kr/m^3}$ и тензора присоединенных масс

$σ_I$, κγ/m ³	$T_1^{(+)}$	$T_1^{(-)}$	$T_{2}^{(+)}$	$T_2^{(-)}$	T_3
12 597 12 960 13 702	5,253266 6,382047 4,848023 4,589068	3,653644 4,715489 3,808195 3,643048	5,251942 6,380558 4,846950 4,588062	3,653197 4,714872 3,807668 3,642539	4,377025 5,317058 4,212587 4,015690

Выводы

Подытожим результаты проведенного исследования.

1. Учет тензора присоединенных масс для свободных колебаний внутреннего ядра Земли в произвольном направлении сказывается в увеличении приблизительно на 1 ч периодов свободных колебаний ядра Земли.

2. Теоретические периоды свободных колебаний для некоторых значений плотности ядра близки к периодам, полученным в результате обработки гравиметрических наблюдений [9].

3. Экспериментальные периоды [9], несмотря на свою близость к вычисленным в настоящей работе, не могут быть объяснены свободными колебаниями внутреннего ядра Земли в рамках используемой модели. Их можно было бы интерпретировать как расщепление экваториальной моды свободных колебаний внутреннего ядра Земли в гравитационном поле несимметричной оболочки при наличии у последней в 40 раз большего квадрупольного момента, чем было принято в работе [1].

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант 97-05-64342).

Автор приносит благодарность д-ру физ.-мат. наук Н.А.Чуйковой за плодотворные дискуссии и помощь в работе.

Литература

- 1. Пасынок С.Л. // Вестн. Моск. ун-та. Физ. Астрон. 1997. № 4. С. 43
- 2. Busse F.H. // J. Geophys. Res. 1974. 79, No. 5. P. 753.
- Седов Л.И. Механика сплошной среды. М., 1994. Т. 1. С. 374.
- 4. Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. М., 1977. С. 177.
- 5. Lamb H. Hydrodynamics (6th ed.). N.Y., 1945. P. 125.
- 6. Kopejkin S.M. // Manuscripta Geodetica. 1991. 16. P. 301.
- 7. Misner C., Thorn K.S., Wheeler J. A. // Gravitation. San Francisco, 1973. P. 87.
- Blanchet L., Damour T. // Phil. Trans. Roy. Soc. Lond. 1986. A320. P. 370.
- 9. Smylie D.E. // Science. 1992. 255. P. 1678.

Поступила в редакцию 05.11.97