- 3. Joachain C.J. Quantum Collision Theory. New York: North Holland, 1975.
- 4. Ландау Л.Д., Лифшиц Е.М. Квантовая механика. М.: Наука, 1984.
- 5. Меркурьев С.П., Фаддеев Л.Д. Квантовая теория рассеяния для систем нескольких частиц. М.: Наука, 1985.

УДК 539.12

6. Комаров В.В., Попова А.М., Шаблов В.Л. Динамика нескольких квантовых частиц. М.: Изд-во Моск. ун-та, 1996.

7. Тейлор Дж. Теория рассеяния. М.: Мир, 1969.

Поступила в редакцию 15.12.97

ЭФФЕКТЫ ВЗАИМОДЕЙСТВИЙ В НАЧАЛЬНОМ И КОНЕЧНОМ СОСТОЯНИЯХ В ПРОЦЕССАХ РОЖДЕНИЯ ЧАСТИЦ $\pi^- \Delta^{++}$ НА ПРОТОНЕ РЕАЛЬНЫМИ И ВИРТУАЛЬНЫМИ ФОТОНАМИ

Е. Н. Головач, В. С. Замиралов, Б. С. Ишханов, В. И. Мокеев, М. В. Осипенко, Д. А. Родионов, Г. В. Федотов, М. Баттальери^{*)}, А. Лонги^{*)}, Дж. Рико^{*)},

М. Рипани^{*)}, М. Таиути^{*)}

$(H \hspace{-0.1cm} H \hspace{-0.1cm} I \hspace$

Проведен анализ эффектов поглощения в начальном и конечном состояниях в реакции $\gamma p \rightarrow \pi^- \Delta^{++}$ с реальными и виртуальными фотонами. Параметры поглощения получены из условия наилучшего воспроизведения экспериментальных данных.

Введение

Процессы рождения пар пионов на протоне реальными и виртуальными фотонами могут эффективно использоваться для исследования структуры нуклонных резонансов с массами свыше 1,5 ГэВ, а также для поиска missing-резонансов, предсказываемых конституентными кварковыми моделями, но не обнаруженных в эксперименте. Измерения эксклюзивных ($e, e'\pi^+\pi^-p$)- и ($\gamma, \pi^+\pi^-p$)-сечений являются важной частью обширной программы изучения нуклонных резонансов, осуществляемой международной коллаборацией CLAS в ТЈNAF [1–3].

В работах [1, 4] развита модель описания процессов рождения пар пионов на протоне реальными и виртуальными фотонами, позволяющая из экспериментальных данных по эксклюзивным сечениям этих процессов определить электромагнитные формфакторы нуклонных резонансов, возбуждаемых во взаимодействии фотонов с протоном. Используется феноменологический подход, в котором параметризуются основные механизмы рождения пар пионов, а параметры определяются из всей совокупности данных, полученных в экспериментах на пучках фотонов и адронов.

Рождение пар пионов на протоне описывается совокупностью двух квазидвухчастичных механизмов:

$$egin{array}{rll} \gamma_{r,v}p &
ightarrow & \pi^-\Delta^{++}, \ \gamma_{r,v}p &
ightarrow &
ho^0 p \end{array}$$

и фазового объема.

При описании реакции (1) важную роль играют эффекты взаимодействия в начальном и конечном состояниях. Учет этих эффектов выполнен феноменологически [5] с использованием определяемых из экспериментальных данных параметров: коэффициентов связи с неупругими каналами в начальном и конечном состояниях $C_{\rm in}$, $C_{\rm out}$, склонов дифракционного конуса для упругого ρp -и $\pi^- \Delta^{++}$ -рассеяния, а также фазы ϕ между амплитудами резонансных и нерезонансных процессов в реакции (1).

В настоящей работе перечисленные выше параметры определены из данных [6–10], полученных в экспериментах с реальными и виртуальными фотонами. Исследовано влияние взаимодействий в начальном и конечном состояниях на сечения реакции (1) как в фотонной точке, так и в зависимости от квадрата 4-импульса виртуального фотона Q^2 .

1. Описание взаимодействий в начальном и конечном состояниях

В модели [1, 4] реакция (1) описывается совокупностью амплитуд возбуждения нуклонных резонансов и нерезонансных процессов, представляемых минимальным набором диаграмм, удовлетворяющим требованиям градиентной инвариантности. Как известно [10], дифференциальные сечения рождения пионов фотонами, рассчитанные в подобных приближениях, завышены по сравнению с их измеренными значениями. При этом расхождение возрастает при увеличении полной энергии W сталкивающихся частиц и угла эмиссии пиона θ^* в системе центра масс реакции и может достигать 100-200%. Это обусловлено тем, что по мере увеличения W и θ^* возрастает вклад неупругих каналов во взаимодействие частиц в начальном и конечном состояниях, не учитываемый минимальным набором механизмов [4, 10]. Несмотря на то что реакция (1) происходит под действием фо-

^{*)} Instituto Nazionale di Fizica Nucleare, Sez. di Genova, Italia.

тонов, взаимодействия в начальном состоянии становятся также значительными при W > 1,7 ГэВ (порог рождения ρ -мезона) вследствие переходов фотона в ρ -мезон и последующих неупругих взаимодействий ρ -мезона.

Последовательный учет эффектов взаимодействий в начальном и конечном состояниях требует расчетов по методу связанных каналов, в которых используются амплитуды неупругих взаимодействий падающих и испущенных частиц. Современные данные по таким амплитудам позволяют выполнить подобные расчеты лишь для W < 1,6 ГэВ [11, 12]. Поскольку основная часть сечения реакции (1) располагается в диапазоне W > 1,7 ГэВ, для описания эффектов взаимодействия в начальном и конечном состояниях использовался феноменологический подход [5]. В этом подходе предполагается, что поглощение во входном и выходном каналах зависит от полного момента *j*, поскольку в квазиклассическом приближении значения *i* связаны с расстояниями между взаимодействующими частицами. При описании реакции (1) учет эффектов взаимодействия в начальном и конечном состояниях сказывается лишь на нерезонансных амплитудах. Это связано с тем, что возбуждения и распады нуклонных резонансов описываются вершинными функциями, определенными из экспериментальных данных. Рассчитанные амплитуды нерезонансных процессов $f_{\lambda_{\Delta}\lambda_{\gamma}\lambda_{p}}(\theta^{*},\varphi)$ разлагаются по состояниям с определенным моментом j:

$$\begin{split} f_{\lambda_{\Delta}\lambda_{\gamma}\lambda_{p}}(\theta^{*},\varphi) &= \sum_{j} f_{\mu\lambda}^{j} d_{\mu\lambda}^{j}(\theta^{*}) \exp\{i(\lambda-\mu)\varphi\},\\ f_{\mu\lambda}^{j} &= \int d\Omega \frac{2j\!+\!1}{4\pi} f_{\lambda_{\Delta}\lambda_{\gamma}\lambda_{p}}(\theta^{*},\varphi) d_{\lambda\mu}^{j}(\theta^{*}) \exp\{i(\lambda\!-\!\mu)\varphi\}, \end{split}$$

$$\end{split}$$

где $\lambda = -\lambda_{\Delta}$; $\mu = \lambda_{\gamma} - \lambda_p$; λ_{γ} , λ_p , λ_{Δ} — спиральности фотона, протона и Δ . Эффекты поглощения в начальном и конечном состояниях учитываются путем умножения амплитуд $f_{\mu\lambda}^j$ на соответствующие коэффициенты поглощения в начальном и конечном состояниях f_{ISI}^j и f_{FSI}^j , при этом вводится фаза интерференции между резонансными и нерезонансными процессами ϕ , которая рассматривается как параметр. Требования унитарности позволяют связать коэффициенты поглощения f_{FSI}^j с амплитудой упругого $\pi^- \Delta^{++}$ -рассяния. Модель векторной доминантности в сочетании с требованиями унитарности дает связь между коэффициентом поглощения в начальном состоянии f_{ISI}^j и амплитудой упругого ρp -рассеяния. Согласно [5], коэффициенты поглощения в начальном и конечном состояниях f_{ISI}^j и f_{FSI}^j описываются соотношениями

$$f_{ISI}^{j} = \left[1 - C_{\rm in} \exp\left\{-\frac{(j - 1/2)^{2}}{2A_{\rm in}p_{\gamma}^{*^{2}}}\right\}\right]^{1/2},$$

$$f_{FSI}^{j} = \left[1 - C_{\rm out} \exp\left\{-\frac{(j - 1/2)^{2}}{2A_{\rm out}p_{\pi}^{*^{2}}}\right\}\right]^{1/2},$$
(3)

где $A_{\rm in}$, $A_{\rm out}$ — склоны дифракционного конуса для реакций упругого $\pi^-\Delta^{++}$ - и ρp -рассеяния, $C_{\rm in}$, $C_{\rm out}$ — коэффициенты связи частиц в начальном и конечном состояниях с неупругими каналами. Поскольку экспериментальные данные о сечениях реакций упругого $\pi^-\Delta^{++}$ -рассеяния отсутствуют, а данные по упругому ρp -рассеянию получены со значительными модельными приближениями, величины $C_{\rm in}$, $C_{\rm out}$, $A_{\rm in}$, $A_{\rm out}$ рассматривались как параметры модели. При этом величины $A_{\rm in}$ и $A_{\rm out}$ варьировались в пределах от 5 ГэВ⁻² (склон дифракционного конуса в $\pi^- p$ -рассеянии) до 12 ГэВ⁻² (склон дифракционного конуса в фоторождении $\pi^-\Delta^{++}$ [13]).

 Q^2 -зависимость коэффициента связи с неупругими каналами в начальном состоянии $C_{in}(Q^2)$ описывалась в рамках модели векторной доминантности следующим образом:

$$C_{
m in}(Q^2) = rac{C_{
m in}(Q^2=0)}{1-Q^2(\Gamma
i B^2)/0,59}, \qquad Q^2 < 0.$$
 (4)

При значениях W, меньших порога рождения ρ -мезона, взаимодействие в начальном состоянии становится пренебрежимо малым, поскольку обусловлено лишь электромагнитными процессами. Конечная ширина ρ -мезона приводит к плавному, а не скачкообразному изменению коэффициента $C_{\rm in}$ вблизи порога рождения ρ -мезона. Эффекты конечной ширины ρ -мезона учитывались путем умножения коэффициента $C_{\rm in}$ в (3) на величину

$$\int_{0}^{(W-m_N)^2} \frac{1}{\pi} \frac{M_{\rho} \Gamma_{\rho}}{(M^2 - M_{\rho}^2)^2 + M_{\rho}^2 \Gamma_{\rho}^2} \, dM^2, \qquad (5)$$

где $M_{
ho}$, $\Gamma_{
ho}$ — масса и ширина ho-мезона, m_N — масса нуклона.

2. Результаты

Для определения параметров $C_{\rm in}, C_{\rm out}, A_{\rm in}, A_{\rm out}$ и фазы интерференции ϕ использовались данные по сечениям реакции (1), полученные в фотонной точке [6, 9]. На рис. 1 показаны измеренные интегральные сечения реакции (1) в зависимости от W [6, 9] и результаты расчетов для различных значений параметров $C_{\rm in} = C_{\rm out}$, не зависящих от W. Фаза интерференции ϕ полагалась равной нулю, а $A_{\rm in} = A_{\rm out} = 10 \ \Gamma$ эВ⁻². Как следует из сравнения результатов расчета с данными [9], ни одна из величин $C_{\rm in} = C_{\rm out}$ не обеспечивает воспроизведения измеренных сечений во всей области W. Наиболее близко к экспериментальным данным расположена кривая, полученная для $C_{
m in}=C_{
m out}=0,7$. На рис. 2 приведены измеренные интегральные сечения реакции (1) и рассчитанные для $C_{\rm in} = C_{\rm out} = 0,7$ при различных величинах $A_{\rm in} = A_{\rm out}$. Видно, что рассчитанные сечения менее чувствительны к изменениям параметров $A_{\rm in}$, A_{out} , чем к изменениям C_{in} , C_{out} . Наиболее близко к экспериментальным данным во всей области W расположена кривая, полученная при $C_{\rm in} = C_{\rm out} = 0.7$,

Рис. 1. Рассчитанные и измеренные [9] интегральные сечения реакции $\gamma p \to \pi^- \Delta^{++}$ при $A_{\rm in} = A_{\rm out} = = 10$ ГэВ⁻² и различных значениях параметров $C_{\rm in,out}$

Рис. 2. Рассчитанные и измеренные [9] интегральные сечения реакции $\gamma p \to \pi^- \Delta^{++}$ при $C_{\rm in} = C_{\rm out} = 0.7$ и различных значениях параметров $A_{\rm in,out}$

Как известно [14], при W > 2 ГэВ значительный вклад в *t*-канал наряду с учитываемым в модели [4, 10] однопионным обменом вносит обмен другими частицами, и для адекватного описания сечений при W > 2 ГэВ необходимо учитывать более сложные *t*-канальные механизмы. С другой стороны, в области энергий возбуждения резонансов W < 2 ГэВ однопионный обмен является хорошим приближением в описании *t*-канала реакции (1) [11]. Возможной причиной расхождения между рассчитанными и измеренными величинами сечений реакции (1) является зависимость от *W* как коэффициентов связи с неупругими каналами, так и фазы интерференции ϕ .

Для определения W-зависимости параметров $C_{\rm in}$ и C_{out} и фазы интерференции ϕ использовались данные [6] по угловым распределениям пионов в системе центра инерции, полученные при различных значениях W (рис. 3). Параметры $C_{\rm in}$, $C_{\rm out}$ и фаза интерференции ф определялись путем фитирования данных [6] при каждом значении W в предположении $C_{\rm in} = C_{\rm out}, A_{\rm in} = A_{\rm out} = 8 \ \Gamma \Im B^{-2}$. Полученные величины параметров и результаты фитирования данных [6] приведены на рис. 3. При W > 1,7 ГэВ коэффициенты $C_{\rm in}$, $C_{\rm out}$ становятся равными единице, что отвечает максимальному поглощению во входном и выходном каналах. При W < 1,5 ГэВ фитирование дает значения $C_{\rm in} = C_{\rm out} = 0$, что свидетельствует об отсутствии поглощения, хотя уменьшение влияния взаимодействий в начальном и конечном состояниях по мере приближения W к порогу реакции (1) снижает чувствительность результатов фитирования к величинам $C_{\rm in}$, $C_{\rm out}$ и значения $C_{
m in} = C_{
m out} < 0,3$ не противоречат имеющимся данным.

Рис. 3. Результат фитирования рассчитанных угловых распределений пионов в реакции $\gamma p \to \pi^- \Delta^{++}$ к данным [6] и определенные зависимости параметров $C = C_{\rm in} = C_{\rm out}$ и ϕ от W. Сплошная линия соответствует учету вкладов резонансов и фона, точечная — учету вклада только борновских членов

Рис. 4. Зависимость полного сечения реакции $\gamma p
ightarrow \pi^- \Delta^{++}$ от Q^2

Подобное поведение коэффициентов связи с неупругими каналами обусловлено следующими обстоятельствами. Неупругие процессы в $\pi^- \Delta^{++}$ -взаимодействиях становятся кинематически разрешенными при W > 1.5 ГэВ. Поэтому коэффициенты связи с неупругими каналами начинают быстро возрастать при W > 1.5 ГэВ. Неупругие взаимодействия во входном канале, как уже отмечалось, становятся возможными, лишь если W превышает порог рождения *р*-мезона (1,71 ГэВ), когда коэффициенты C_{in} и C_{out} достигают максимальных значений. На рис. 2 сплошной линией показаны рассчитанные интегральные сечения реакции (1) со значениями параметров $C_{\rm in}$, $C_{\rm out}$, полученными в нашей модели. Согласно рис. 2, 3, модель хорошо воспроизводит как интегральные, так и дифференциальные сечения реакции (1) в фотонной точке при 1,5 < W < 2 ГэВ.

Для исследования Q^2 -зависимости коэффициентов связи с неупругими каналами в начальном состоянии данные [8] по интегральным сечениям реакции (1), полученные при W = 2,1 ГэВ и различных значениях Q^2 , сравнивались с результатами расчета (рис. 4). При W > 2 ГэВ вкладом резонансных возбуждений можно пренебречь и Q^2 -зависимость сечения определяется поведением лишь нерезонансных процессов. Как видно из рис. 4, наблюдается хорошее согласие между измеренными и рассчитанными величинами интегральных сечений реакции (1). Это свидетельствует о том, что модель векторной доминантности хорошо воспроизводит Q^2 -зависимость коэффициентов связи с неупругими каналами $C_{\rm in}(Q^2)$ (4).

Заключение

Исследованы эффекты взаимодействий частиц в начальном и конечном состояниях в реакции $\gamma_{r,v}p \to \pi^- \Delta^{++}$ в рамках модели [1, 4]. Из экспериментальных данных по сечениям этой реакции в фотонной точке определены величины коэффициентов связи с неупругими каналами в начальном и конечном состояниях, а также величина фазы ϕ между амплитудами резонансных и нерезонансных процессов в зависимости от W. Показано, что модель хорошо воспроизводит данные [6, 9] в фотонной точке при 1,5 < W < 2 ГэВ. Модель векторной доминантности позволяет описать Q^2 -зависимость коэффициентов связи с неупругими каналами в начальном состоянии $C_{\rm in}(Q^2)$.

Литература

- 1. Ripani M. // Nucl. Phys. 1997. A623. P. 110.
- Burkert V., Ripani M. CEBAF Experiment E-93-003 // Report at the Meeting of the CEBAF Program Advisory Committee PAC8 (June 13–17 1994).
- Napolitano J. CEBAF Experiment E-91-039 // Report at the Meeting of the CEBAF Program Advisory Committee PAC8 (June 13–17 1994).
- 4. Головач Е.Н., Замиралов В.С., Ишханов Б.С. и др. // Вестн. Моск. ун-та. Физ. Астрон. 1999. № 1. С. 34 (Moscow University Phys. Bull. 1999. No. 1).
- 5. Gottfried K., Jackson J.D. // Nuovo Cimento. 1964. 34. P. 736.
- Cambridge Bubble Chamber Group // Phys. Rev. 1967. 155.
 P. 1477; ABBHM-Collaboration // Phys. Rev. 1968. 175.
 P. 1669.
- 7. Damman I. // Nucl. Phys. 1973. B54. P. 355.
- 8. Wacker K. // Nucl. Phys. 1978. B144. P. 269.
- 9. Klein F.J. // Bonn University Thesis BONN-IR-96-08.
- Lüke D., Söding P. // Springer Tracts in Modern. Physics. 1971.
 59. P. 39.
- 11. Nozawa S., Blankleider B., Lee T.S.H. // Nucl. Phys. 1990. A513. P. 459.
- 12. Surya Y., Gross F. Preprint CEBAF-TH-95-04.
- 13. Buschorn G. // Phys. Lett. 1970. B33. P. 241.
- Guidal M., Laget J.-M., Vanderhaeghen M. // Phys. Lett. 1997. B400. P. 6.

Поступила в редакцию 08.06.98