от k. Для отрыва конкретного фрагмента молекулы необходимо накопление определенной энергии (количества эксимолей). Мы проанализировали зависимость числа возникающих эксимолей k от скорости при m = 60 и пороговом значении вероятности P_{mk} на половине высоты максимума. Результаты представлены на рис. 3. Видно, что вероятность процесса диссоциации полиатомных молекул является пороговой функцией скорости, что согласуется с результатами эксперимента [7].

Литература

- Cooks R.G., Ast T., Mabud M.D.A. // Int. J. Mass Spectr. Ion. Process. 1990. 100. P. 209.
- Jones L., Dongre A.R., Somogy A., Wysocki V.H. // J. Am. Chem. Soc. 1994. 116. P. 8368.
- Schmidt L., Fritsch H.-W., Jungclas H. // Rapid Commun. Mass Spectr. 1993. 7. P. 507.

УДК 539.12.01

- Борзилов В.А., Затекин В.В., Комаров В.В. и др. // Вестн. Моск. ун-та. Физ. Астрон. 1998. № 3. С. 3 (Moscow University Phys. Bull. 1998. No. 3).
- Schmidt L., Popova A.M., Komarov V.V., Jungclas H. // Z. Naturforsch. 1996. 51a. P. 1144.
- Komarov V.V., Popova A.M., Schmidt L., Jungclas H. // Mol. Phys. 1997. 91, No. 1. P. 139.
- Jungclas H., Komarov V.V., Popova A.M., Schmidt L. // Eur. Phys. J. 1998. D1. P. 193.
- 8. *Оцуки Е.-Х.* Взаимодействие заряженных частиц с твердыми телами. М.: Мир, 1985.
- 9. Komarov V.V., Schmidt L., Fritsch H.-W., Jungclas H. // Comput. Mater. Sci. 1994. 2. P. 427.

Поступила в редакцию 11.12.98

ПРОПАГАТОР ЗАРЯЖЕННОГО *W*-БОЗОНА В ЭЛЕКТРОМАГНИТНОМ ПОЛЕ В ОБОБЩЕННОЙ *R*_{\$}-КАЛИБРОВКЕ

А. М. Егоров, А. И. Студеникин

(кафедра теоретической физики)

Найдено точное решение уравнения для пропагатора заряженного W-бозона в обобщенной R_{ξ} -калибровке с учетом действия скрещенного электромагнитного поля. Полученное общее выражение согласуется с известным результатом для пропагатора в отсутствие электромагнитного поля, а также в электромагнитном поле для случаев унитарной и фейнмановской калибровок. Обсуждается принципиальная важность использования пропагатора W-бозона в R_{ξ} -калибровке при рассмотрении соответствующих петлевых процессов в электромагнитном поле.

При рассмотрении движения заряженных и нейтральных лептонов во внешнем электромагнитном поле в низшем порядке теории возмущений стандартной модели электрослабых взаимодействий Вайнберга-Салама возникают процессы, которые описываются однопетлевыми диаграммами, содержащими пропагатор заряженного W-бозона в электромагнитном поле. Необходимость использовать явный вид пропагатора W-бозона во внешнем поле возникает при расчете W-бозонного вклада в аномальный магнитный момент заряженного лептона (см., напр., [1–3]). Интерес к однопетлевым процессам в электромагнитном поле, содержащим виртуальные W -бозоны, стимулируется в последнее время также исследованием проблемы движения заряженных и нейтральных лептонов в реальных условиях астрофизических сред [4-7].

В настоящей статье обсуждается вопрос о пропагаторе W-бозона во внешнем скрещенном электромагнитном поле, которое, как известно [8], может быть использовано в качестве модели при рассмотрении широкого класса взаимодействий релятивистских частиц в произвольных электромагнитных полях.

Явный вид пропагатора W-бозона для случая

унитарной, а также фейнмановской калибровки в скрещенном электромагнитном поле получен в работе [9]. Часто при проведении расчетов петлевых диаграмм предпочтение отдается унитарной калибровке. Это связано с тем, что в ней, в отличие от общей *R*_{*\eta}-калибровки или фейнмановской калибровки,*</sub> пропагаторы духов и нефизических бозонов равны нулю и поэтому число диаграмм, дающих вклад в характеристики конкретного процесса, минимально. Однако использование с самого начала расчета явного вида пропагаторов векторных бозонов, соответствующего унитарной калибровке, может приводить к неоднозначностям в окончательных выражениях для характеристик процессов, устранение которых, вообще говоря, требует проведения дополнительной процедуры. Так, например, при вычислении петлевых вкладов от процессов типа $l \rightarrow \nu W \rightarrow l$ [1, 9] в аномальный магнитный момент лептона l в унитарной калибровке необходимо производить процедуру регуляризации, т.е. замену $\frac{1}{p^2 - M^2} \rightarrow -\frac{\Lambda^2}{p^2 - \Lambda^2} \frac{1}{p^2 - M^2}$ с последующим устремлением $\Lambda \rightarrow \infty$. Эта особенность проявляется в расчетах как петлевых процессов без учета действия внешнего электромагнитного поля [10], так и петлевых процессов, протекающих во внешнем поле [1, 7].

В определенном смысле более последовательный способ проведения расчетов петлевых диаграмм предполагает использование вначале пропагатора W-бозона в обобщенной R_{ξ} -калибровке и лишь затем (после вычисления соответствующего элемента S-матрицы) переход к унитарной калибровке.

В связи с этим возникает задача нахождения явного вида пропагатора W-бозона в скрещенном электромагнитном поле в R_{ξ} -калибровке. Как известно, такой пропагатор удовлетворяет уравнению

$$egin{aligned} &\Lambda^eta_lpha G_{eta\mu}(x,x') = g_{lpha\mu}\delta^4(x-x'),\ &\Lambda^eta_lpha = \{(M_W^2 - \pi_
u\pi^
u)g^eta_lpha + 2ieF^eta_lpha - (\xi-1)\pi_lpha\pi^eta\},\ (1)\ &\pi_
u = i\partial_
u - eA_
u, \end{aligned}$$

где $A_{\mu} = a_{\mu}\varphi$ — потенциал скрещенного поля ($\varphi = nx, n = (1, 0, 0, 1), a = (0, 0, a_2, 0)$), ξ — параметр, фиксирующий калибровку (например, $\xi = 1$ соответствует фейнмановской, а $\xi = 0$ — унитарной калибровке).

Введем обозначение для коэффициента при последнем члене дифференциального оператора Λ_{α}^{β} : $\alpha = 1 - \xi$. Случаю фейнмановской калибровки будет соответствовать значение $\alpha = 0$, тогда решение уравнения (1) может быть представлено в виде [1, 9]

$$egin{aligned} G^F_{eta\mu}(x,x') &\equiv G^{lpha=0}_{eta\mu}(x,x') = \ &= \int rac{d^4 p}{(2\pi)^4} \Delta^F_{eta
ho} \Omega^
ho_\mu(x,x') \exp\{i\Gamma(x,x')\}, \ &\Delta^F_{eta
ho} = \Delta^{(0)}_{eta
ho} = g_{eta
ho}, \end{aligned}$$

где

$$\Omega^{\rho}_{\mu}(x,x') = -\frac{1}{(p^2 - M_W^2)} \times \left[g^{\rho}_{\mu} + \frac{e}{p_-}(\phi - \phi')(n^{\rho}a_{\mu} - a^{\rho}n_{\mu}) - \frac{e^2a^2}{2p_-^2}n^{\rho}n_{\mu}(\phi - \phi')^2\right],$$

$$\Gamma(x,x') = -n(x - x') + \left[F(\phi) - F(\phi')\right]. \tag{2}$$

$$1(x, x) = -p(x - x) + [F(\phi) - F(\phi)], \quad (2)$$

$$e(pa) = e^{2}a^{2}$$

$$p_{-} = p_0 - p_3, \quad F(\phi) = -rac{e(pa)}{2p_{-}}\phi^2 + rac{e(a)}{6p_{-}}\phi^3.$$

Случаю унитарной калибровки соответствует значение $\alpha = 1$. Тогда решение уравнения (1) представимо в виде [1, 9]

$$G^{U}_{\beta\mu}(x,x') \equiv G^{\alpha=1}_{\beta\mu}(x,x') =$$

$$= \int \frac{d^4p}{(2\pi)^4} \Delta^{U}_{\beta\rho} \Omega^{\rho}_{\mu}(x,x') \exp\{i\Gamma(x',x)\}, \qquad (3)$$

$$\Delta^{U}_{\beta\rho} = \Delta^{(0)}_{\beta\rho} + \Delta^{(1)}_{\beta\rho},$$

где $\Delta^{(1)}_{eta
ho} = -\pi_eta\pi_
ho/(M_W^2)$.

Предположим теперь, что решение уравнения (1) в случае общей R_{ξ} -калибровки ($\alpha = 1 - \xi$, ξ произвольное) имеет следующую структуру:

$$G^{R_{\xi}}_{\beta\mu}(x,x') \equiv G^{\alpha=1-\xi}_{\beta\mu}(x,x') =$$

$$= \int \frac{d^4p}{(2\pi)^4} \Delta^{R_{\xi}}_{\beta\rho} \Omega^{\rho}_{\mu}(x,x') \exp\{i\Gamma(x,x')\}, \qquad (4)$$

$$\Delta^{R_{\xi}}_{\beta\rho} = \Delta^{(0)}_{\beta\rho} + \Delta^{(1)}_{\beta\rho} + \Delta^{(\xi)}_{\beta\rho},$$

а $\Delta_{\beta\rho}^{(\xi)}$ может быть представлено по аналогии с выражением для $\Delta_{\beta\rho}^{(1)}$ в формуле (3):

$$\Delta^{(\xi)}_{eta
ho}=-\pi_eta\pi_
ho f(\xi),$$

где $f(\xi)$ — неизвестная функция калибровочного параметра ξ , которую требуется определить.

Подставим (4) в исходное уравнение (1). С учетом равенства

$$egin{aligned} &\{\pi_
u\pi^
u\}f(x,x')=(i\partial_
u-eA_
u)(i\partial^
u-eA^
u)f(x,x')=\ &=(\partial_
u\partial^
u-ie(\partial_
uA^
u)-2eA_
ui\partial^
u+e^2A_
uA^
u)f(x,x') \end{aligned}$$

(здесь f(x, x') — произвольная гладкая функция переменных x, x') можно показать, что

$$egin{aligned} & \{\pi_
u\pi^
u\pi_lpha-\pi_lpha\pi^
u\pi_
u\}f(x,x')=\ &=2ie(\partial_lpha A^
u-\partial'^
u}A_lpha)\pi_
uf(x,x'). \end{aligned}$$

Отсюда в силу справедливости соотношения

$$(\partial_lpha A^
u - \partial^
u A_lpha) f(x,x') = 2ie F^
u_lpha \pi_
u f(x,x')$$

следует «правило коммутации»

$$(\pi_{\nu}\pi^{\nu}\pi_{\alpha} - \pi_{\alpha}\pi^{\nu}\pi_{\nu})f(x,x') = 2ieF_{\alpha}^{\nu}\pi_{\nu}f(x,x').$$
(5)
С учетом (5) уравнение (1) принимает вид
$$(M_{W}^{2} - \xi\pi_{\nu}\pi^{\nu})\pi_{\alpha}\Omega_{-}^{\rho}(x,x')\exp\{i\Gamma(x,x')\} =$$

$$= \frac{\xi}{M_W^2} (M_W^2 - \pi_\nu \pi^\nu) \pi_\rho \Omega_\mu^\rho(x, x') \exp\{i\Gamma(x, x')\}.$$
⁽⁶⁾

Поскольку

$$(\pi_
u\pi^
u - p^2)\pi_
ho\Omega^
ho_\mu(x,x')\exp\{i\Gamma(x,x')\} = 0,$$

из (6) следует

$$egin{aligned} M_W^2 \left(-rac{M_W^2}{\xi} {+} \pi_
u \pi^
u
ight) \pi_
ho f(\xi) \Omega_\mu^
ho(x,x') \exp\{i\Gamma(x,x')\} = \ &= (p^2 - M_W^2) \pi_
ho \Omega_\mu^
ho(x,x') \exp\{i\Gamma(x,x')\}. \end{aligned}$$

Отсюда легко определить функцию $f(\xi)$. Таким образом, для $\Delta_{\beta\rho}^{(\xi)}$ получаем

$$\Delta_{\beta\rho}^{(\xi)} = \frac{\pi_{\beta}\pi_{\rho}}{M_W^2} \frac{(p^2 - M_W^2)}{(p^2 - M_W^2/\xi)}$$

$$G_{\beta\mu}^{R_{\xi}}(x,x') \equiv G_{\beta\mu}^{\alpha=1-\xi}(x,x') = = \int \frac{d^4p}{(2\pi)^4} \Delta_{\beta\rho}^{R_{\xi}} \Omega_{\mu}^{\rho}(x,x') \exp\{i\Gamma(x,x')\} = = \int \frac{d^4p}{(2\pi)^4} \left[g_{\beta\rho} - \frac{\pi_{\beta}\pi_{\rho}}{M_W^2} \left[1 - \frac{p^2 - M_W^2}{(p^2 - M_W^2/\xi)}\right]\right] \times \times \Omega_{\mu}^{\rho}(x,x') \exp\{i\Gamma(x,x')\},$$
(7)

где явный вид $\Gamma(x, x')$ приведен в (2).

При соответствующем выборе значения параметра ξ , фиксирующего калибровку, формула (7) дает выражение для пропагатора W-бозона в скрещенном электромагнитном поле для случаев фейнмановской и унитарной калибровок.

Если в формуле (7) «выключить» электромагнитное поле ($A_{\mu} \rightarrow 0$), то получится известный результат (см., напр., [10]) для пропагатора W-бозона в R_{ξ} -калибровке в вакууме. Кроме того, явный вид пропагатора W-бозона в R_{ξ} -калибровке позволяет строго обосновать дополнительную процедуру, которая была проведена с целью получения конечного результата при расчетах в унитарной калибровке полевого W-бозонного вклада в аномальный маг-

УДК 519.2:534

нитный момент заряженного лептона [1, 3]. С использованием (7) можно также получить замкнутое выражение [7] для магнитного момента ν_e , точно учитывающее зависимость от отношений масс частиц (m_{ν}/m_W и m_e/m_W), участвующих в соответствующем процессе.

Литература

- 1. Тернов И.М., Родионов В.Н., Перес-Фернандес В.К., Студеникин А.И. // Изв. вузов, Физика. 1985. № 12. С. 55.
- Студеникин А.И., Тернов А.И. // Изв. вузов, Физика. 1992. № 6. С. 65.
- Студеникин А.И. // ЖЭТФ. 1990. 97. С. 1407; Studenikin A. // Results and Perspectives in Particle Physics: Frascati Physics Series (Italy) / Ed. M. Greco. 1998. V. 12. P. 247.
- 4. Жуковский В.Ч., Шония Т.Л., Эминов П.А. // ЖЭТФ. 1993. 104. С. 3269.
- Elmfors P., Persson D., Skagerstam B. // Nucl. Phys. 1996. B464. P. 153.
- 6. Erdas A., Kim C., Lee T. // E-print Archives: hep-ph/9804318.
- Egorov A.M., Lobanov A.E., Studenikin A.I. // New Worlds in Astroparticle Physics / Ed. A. Mourao. Singapore: World Scientific, 1999; E-print Archives: hep-ph/9902447.
- 8. *Ритус В.И.* // Тр. ФИАН. М.: Наука, 1979. Т. 111. С. 5.
- Студеникин А.И. // Изв. вузов, Физика. 1988. № 8. С. 126; Дис. ... д-ра физ.-мат. наук. М. (МГУ), 1992.
- 10. Fujikawa K., Lee B., Sanda A. // Phys. Rev. 1972. D7. P. 2923.

Поступила в редакцию 11.01.99

О ЗАДАЧЕ ИНТЕРПРЕТАЦИИ ИЗМЕРЕНИЯ ПРИ НЕЧЕТКОЙ МОДЕЛИ ЭКСПЕРИМЕНТА

Т. В. Матвеева, Ю. П. Пытьев

(кафедра компьютерных методов физики)

Показано, каким образом априорная нечеткость модели эксперимента определяет нечеткость интерпретации измерений.

Введение

Для решения линейной статистической задачи интерпретации измерений требуется знание моментов первого и второго порядков случайных ошибок, в то время как на практике эти знания обычно нечетки, носят качественный характер и не могут быть использованы в рамках теоретико-вероятностных методов. Для использования нечеткой информации о математической модели эксперимента в работе предлагается теоретико-возможностный подход [1]. Приведем необходимые для дальнейшего изложения результаты по методам редукции измерений и теории возможностей [1, 2].

Пусть схема измерений представлена в виде

$$\xi = Af + \nu, \tag{1}$$

где ξ — искаженный шумом $\nu \in \mathcal{R}$ выходной сигнал Af прибора A, на вход которого поступил сигнал

 $f \in \widetilde{\mathcal{R}}$ от измеряемого объекта и среды; $\mathcal{R}, \widetilde{\mathcal{R}}$ — конечномерные евклидовы пространства; А — линейный оператор, моделирующий измерительный прибор. В задаче редукции измерения задан линейный оператор $U: \widetilde{\mathcal{R}} \to \mathcal{U}$, моделирующий связь между сигналом f и параметрами $Uf \in \mathcal{U}$ исследуемого объекта. Оператор U моделирует так называемый идеальный измерительный прибор, на выходе которого исследователь получает параметры объекта, свойственные его естественному состоянию, не искаженному измерением. В простейшей задаче редукции измерения (1) требуется определить линейный оператор $R: \ \widetilde{\mathcal{R}} \to \mathcal{U}$ так, чтобы преобразование $R\xi = RAf + R\nu$ наиболее точно приближало значения U f параметров исследуемого объекта, при этом *R* кожно рассматривать как искаженный шумом *Rv* выходной сигнал прибора *RA*. Описанная задача называется задачей редукции измерения к идеально-