Работа выполнена при поддержке РФФИ (гранты 99-05-64045, 99-01-01041).

Литература

- Самолюбов Б.И., Силаева Л.В. // Изв. РАН, ФАО. 1998.
 № 2. С. 274.
- Шулейкин В.В. Физика моря М.: Наука, 1968. Гл. 4, § 10. С. 460.
- Анисимова Е.П., Поборчая Л.В., Сперанская А.А. // Изв. АН СССР, ФАО. 1978. 14, № 10. С. 1110.
- 4. Дрижус М.Р., Марцинкус К.К. // Всес. конф. «Проблемы стратифицированных течений», Юрмала-88. ИФ АН Латв. ССР. 1988. Тез. докл. Т. 2. С. 13.

- Еремина Е.Р., Карлин Л.Н. // Интрузионные течения: Теория и эксперимент. Сб. научных трудов. Калининград, 1997. С. 30.
- 6. Лозовацкий И.Д., Озмидов Р.В. // Океанология. 1979. 19, № 6. С. 982.
- 7. Padman L. // J. Geophys. Res. 1994. C99, No. 11. P. 22, 491.
- 8. Bowden K.F. // Ocean Management. 1981. 6, No. 2/3. P. 117.
- Jungclaus J.H., Backhaus J.O. // J. Geophys. Res. 1994. C99, No. 6. P. 12, 385.
- Stacey M.W., Bowen A.J. // J. Geophys. Res. 1988. C93, No. 4. P. 3528.

Поступила в редакцию 02.10.98

УДК 537.871.64

МЕТОД ОПРЕДЕЛЕНИЯ ФАЗОВОЙ СКОРОСТИ ПЕРЕМЕЩАЮЩИХСЯ ИОНОСФЕРНЫХ ВОЗМУЩЕНИЙ

В. Д. Гусев, А. Г. Вологдин, Н. В. Карабанов, Д. В. Кирьянов

(кафедра физики атмосферы)

Теоретически обосновывается метод определения фазовой и групповой скорости перемещающихся ионосферных возмущений. Метод основан на спектральном анализе угломерно-доплеровских данных дистанционного радиозондирования ионосферы. Метод иллюстрируется на примере обработки экспериментальных данных.

Крупномасштабные неоднородности слоя F2 ионосферы связывают с перемещающимися ионосферными возмущениями (ПИВ), которые имеют волновую природу и вызываются, согласно современным представлениям [1], распространяющимися в верхних слоях атмосферы акустико-гравитационными волнами. Характерные периоды таких неоднородностей составляют от единиц до десятков и сотен минут. Несмотря на накопленный за последние полвека обширный материал по ПИВ, на сегодняшний день открытыми остаются такие вопросы, как их дисперсионные свойства, соотношение фазовых и групповых скоростей, механизмы генерации и т.п. При этом если крупномасштабные движения ионосферы изучены довольно полно, то средне- и маломасштабные возмущения — совершенно недостаточно.

Наиболее широко применяемым методом экспериментального изучения ПИВ является наземное радиозондирование в коротковолновом диапазоне. Параметры зондирующего сигнала регистрируются, как правило, в нескольких пунктах наблюдения на поверхности Земли, т.е. пространственно-разнесенным приемом. Впервые задача определения фазовой скорости ПИВ по флуктуациям параметров рассеянного поля (например, амплитуды или доплеровского смещения частоты) была решена в работе [2] и предусматривала вычисление соответствующих кросс-спектров и анализ их мнимых составляющих. В дальнейшем данная методика была обобщена на случай пространственной анизотропии рассеяния радиоволн на ПИВ [3], а практическая реализация проводилась во многих работах (см., напр., [4]).

К ограничениям данного способа определения фазовой скорости относится необходимость организации большого числа пунктов наблюдения, в особенности при изучении разномасштабных ПИВ. В работе [5] предложен дифференциально-фазовый метод измерения, касающийся диагностики пространственной структуры ионосферных возмущений. Этим методом с помощью одной угломерно-доплеровской установки возможно исследование неоднородностей разного масштаба. В настоящей статье развиваются спектральные методы анализа ионосферного сигнала для определения групповых и фазовых скоростей ПИВ применительно к дифференциально-фазовой схеме измерения.

Определение скорости ионосферных возмущений по дифференциально-фазовым характеристикам радиосигнала, а именно углам прихода и доплеровскому смещению, составляет обратную задачу динамики ионосферных возмущений. Рассмотрим сначала прямую задачу рассеяния радиоволн в среде, характеризуемой показателем преломления n(x, y, z, t), который моделирует распространяющееся в ионосфере ПИВ. Требуется определить доплеровское смещение и углы прихода зондирующего радиосигнала на выходе из ионосферы.

Рассеяние волн в средах с плавно меняющимися свойствами описывается с помощью методов геометрической оптики. Фаза волны в среде выражается в виде интеграла по невозмущенной траектории:

$$\Phi = k \int n(x,y,z,t) \ d\sigma.$$

Поскольку фаза выражается линейным функционалом от показателя преломления среды, то и функция корреляции фазы будет обладать тем же свойством:

$$R_{\Phi}(\xi_0,\eta_0) = k_0^2 \iint R_n(\xi_0+\xi,\ \eta_0+\eta,\ \zeta)\, d\sigma_1 d\sigma_2, ~~(1)$$

где $\xi = x(\sigma_1) - x(\sigma_2)$, $\eta = y(\sigma_1) - y(\sigma_2)$, $\zeta = z(\sigma_1) - z(\sigma_2)$. В этом случае определяемые из эксперимента вторые моменты производных случайной составляющей фазы Φ_1 :

$$\overline{\left(\frac{\partial\Phi_{1}}{\partial x}\right)^{2}} = -\frac{\partial^{2}R_{\Phi}}{\partial\xi_{0}^{2}}\Big|_{\substack{\xi_{0}=0\\\eta_{0}=0}}, \quad \overline{\left(\frac{\partial\Phi_{1}}{\partial y}\right)^{2}} = -\frac{\partial^{2}R_{\Phi}}{\partial\eta_{0}^{2}}\Big|_{\substack{\xi_{0}=0\\\eta_{0}=0}}, \quad \overline{\left(\frac{\partial\Phi_{1}}{\partial x}\frac{\partial\Phi_{1}}{\partial y}\right)} = -\frac{\partial^{2}R_{\Phi}}{\partial\xi_{0}\partial\eta_{0}}\Big|_{\substack{\xi_{0}=0\\\eta_{0}=0}}.$$
(2)

Свойства ПИВ должны быть заложены в функцию корреляции показателя преломления, поэтому используем ее двумерное представление в виде спектра плоских волн различного направления и длины $(\lambda_1 \ u \ \lambda_2)$:

$$R_n(\xi,\eta) = k_0^2 \iint G_n(\lambda_1,\lambda_2) \, \mathrm{e}^{i\lambda_1\xi + i\lambda_2\eta} \, d\lambda_1 d\lambda_2$$

и для получения пространственно-временной функции корреляции введем дрейф каждой частотной составляющей со своей фазовой скоростью **V**:

$$R_n(\xi,\eta, au) = = k_0^2 \iint G_n(\lambda_1,\lambda_2) e^{i\lambda_1(\xi-V_x au)+i\lambda_2(\eta-V_y au)} d\lambda_1 d\lambda_2.$$

Для упрощения дальнейших выкладок перейдем от системы координат (x, y) к системе, где одна из координатных осей параллельна скорости дрейфа (соответствующие проекции обозначены индексами V и -):

$$R_n(\xi_V, V_-, au) = k_0^2 \iint A \, d\lambda_V d\lambda_-,$$

где $A = G_n(\lambda_V, \lambda_\tau) e^{i\lambda_V(\xi_V - V_\tau) + i\lambda_\perp \xi_\perp}$.

Подставив это выражение для R_n в (1), получим основное уравнение для анализа экспериментальных данных:

$$R_{\Phi}(0,0,\tau) = k_0^2 \iint d\sigma_1 d\sigma_2 \iint A \, d\lambda_V d\lambda_{-}.$$
(3)

В системе координат, связанной с вектором скорости, в соответствии с (2) получим

$$\frac{\overline{\left(\frac{\partial \Phi_{1}}{\partial x_{V}}\right)^{2}}}{\left(\frac{\partial \Phi_{1}}{\partial x_{-}}\right)^{2}} \equiv R_{V}\theta_{V}^{2} = k_{0}^{2} \iint d\sigma_{1}d\sigma_{2} \iint \lambda_{V}^{2}A \, d\lambda_{V}d\lambda_{-},$$

$$\frac{\overline{\left(\frac{\partial \Phi_{1}}{\partial x_{-}}\right)^{2}}}{\left(\frac{\partial \Phi_{1}}{\partial x_{V}} \frac{\partial \Phi_{1}}{\partial x_{-}}\right)} \equiv R_{V-}\theta_{V}\theta_{-} =$$

$$=k_0^2\iint d\sigma_1 d\sigma_2 \iint \lambda_V \lambda_- A \, d\lambda_V d\lambda_- \qquad (4)$$

и корреляции углов рассеяния с доплеровским сдвигом частоты:

$$\begin{pmatrix} \frac{\partial \Phi_{1}}{\partial t} \frac{\partial \Phi_{1}}{\partial x_{-}} \end{pmatrix} \equiv R_{\Omega-} \theta_{\Omega} \theta_{-} = \\
= -k_{0}^{2} \iint d\sigma_{1} d\sigma_{2} \iint \lambda_{V} \lambda_{-} V(\lambda_{V}) A d\lambda_{V} d\lambda_{-}, \\
\hline \left(\frac{\partial \Phi_{1}}{\partial t} \frac{\partial \Phi_{1}}{\partial x_{V}} \right) \equiv R_{\Omega-} \theta_{\Omega} \theta_{V} = \\
= -k_{0}^{2} \iint d\sigma_{1} d\sigma_{2} \iint \lambda_{V}^{2} V(\lambda_{V}) A d\lambda_{V} d\lambda_{-}.
\end{cases}$$
(5)

Теперь необходимо перейти к спектрам мощности углов прихода G_V , G_- , G_{V-} и их ко-спектрам $G_{V\Omega}$, $G_{-\Omega}$ с доплеровским смещением. Для этого умножим все соотношения (4)–(5) на $e^{i\Omega\tau}$ и проинтегрируем их по τ , учтя равенство

$$\frac{1}{2\pi}\int_{-\infty}^{\infty} e^{i[\Omega-V(\lambda_V)\lambda_V]\tau} d\tau = \delta\Big(\Omega-V(\lambda_V)\lambda_V\Big),$$

где $\delta(\cdot) - \delta$ -функция Дирака. При этом получим спектры мощности путем интегрирования левой части (4), (5):

$$G_V(\Omega) = rac{1}{2\pi} \int\limits_{-\infty}^\infty R_V heta_V^2 \, {
m e}^{i\Omega au} \, d au$$

Остальные соотношения полностью аналогичны.

Теперь, используя фильтрующие свойства δ -функции, можно осуществить интегрирование по λ_V . Имея в виду, что по определению групповой скорости $V_g = d(\lambda_V V)/d\lambda_V$, из (4), (5) получаем

$$G_{V}(\Omega) = \frac{k_{0}^{2}\Omega^{2}}{V_{g}V^{2}(\Omega)} \iint d\sigma_{1}d\sigma_{2} \int B d\lambda_{-},$$

$$G_{-}(\Omega) = \frac{k_{0}^{2}}{V_{g}} \iint d\sigma_{1}d\sigma_{2} \int \lambda_{-}^{2} B d\lambda_{-},$$

$$G_{-V}(\Omega) = \frac{k_{0}^{2}\Omega^{2}}{V_{g}V(\Omega)} \iint d\sigma_{1}d\sigma_{2} \int \lambda_{-} B d\lambda_{-},$$

$$G_{V\Omega}(\Omega) = -\frac{k_{0}^{2}\Omega^{2}}{V_{g}V(\Omega)} \iint d\sigma_{1}d\sigma_{2} \int B d\lambda_{-},$$

$$G_{-\Omega}(\Omega) = -\frac{k_{0}^{2}\Omega^{2}}{V_{g}} \iint d\sigma_{1}d\sigma_{2} \int \lambda_{-} B d\lambda_{-},$$

где $B = G(\Omega/V(\Omega), \lambda_{-}) e^{i\lambda_{\perp}\xi_{\perp}}$. Отсюда следует выражение для фазовой скорости: $V_{\rm ph}(\Omega) \equiv V(\Omega) = -G_{V\Omega}(\Omega)/G_V(\Omega)$. Знак «минус» определяется ориентацией координатной оси вдоль вектора скорости.

Основная система координат связана с геометрией измерительной установки. Переходя к этой системе координат, необходимо совершить поворот на угол φ_{y} между вектором скорости и осью x координат:

$$\xi_V = \xi \cos \varphi_V - \eta \sin \varphi_V, \quad \xi_- = \xi \sin \varphi_V + \eta \cos \varphi_V$$

Тогда, подставляя эти выражения в (3) и (2) и проводя ту же процедуру, что и с (4), т. е. умножение на $e^{i\Omega\tau}$ и интегрирование, получим связь между спектрами в разных координатах:

$$\begin{split} G_x &= G_V \cos^2 \varphi_V + G_- \sin^2 \varphi_V - G_{V-} \sin 2\varphi_V, \\ G_y &= G_V \sin^2 \varphi_V + G_- \cos^2 \varphi_V + G_{V-} \sin 2\varphi_V, \\ G_{xy} &= (G_V - G_-) \sin \varphi_V \cos \varphi_V + G_{V-} (\cos^2 \varphi_V - \sin^2 \varphi_V), \\ G_{\Omega x} &= V_{\rm ph} (G_V \cos \varphi_V - G_{V-} \sin \varphi_V), \\ G_{\Omega y} &= V_{\rm ph} (G_V \sin \varphi_V + G_{V-} \cos \varphi_V). \end{split}$$

Отсюда несложно получить связь спектров в координатах измерительной системы:

$$G_{\Omega x} = V_{\rm ph} (G_x \cos \varphi_V + G_{xy} \sin \varphi_V),$$

$$G_{\Omega y} = V_{\rm ph} (G_y \sin \varphi_V + G_{xy} \cos \varphi_V).$$
(6)

Следует подчеркнуть, что приведенные выкладки (в случае частотной дисперсии) справедливы в условиях постоянства скорости для каждой частотной составляющей в ионосферном слое без учета зависимости от высоты и времени (использованная нами модель ионосферного рассеяния радиоволн обсуждалась в работе [6]). В противном случае корреляционная функция (1) будет зависеть от времени, и процесс будет нестационарным.

Приведем пример определения фазовой скорости ПИВ, т.е. решения обратной задачи. В 1995-1997 гг. был организован эксперимент по наклонному зондированию ПИВ согласно изложенной методике. С помощью радиопеленгационной установки, созданной на физическом факультете [7], измерялись углы прихода и доплеровское смещение частоты. Затем методом Блекмана-Тьюки [8] вычислялись спектры, входящие в (6). В соответствии с этой формулой были вычислены дисперсионные зависимости абсолютного значения и направления фазовой скорости от частоты ПИВ. Типичные результаты обработки наблюдений приведены на рисунке. Видны две четко различающиеся области: одна — с нормальной (фазовая скорость уменьшается с увеличением частоты), другая — с аномальной дисперсией.

Суммируя сказанное, можно утверждать, что метод определения фазовой скорости ПИВ по частотной зависимости спектров мощности углов прихода и доплеровского смещения полностью обоснован. Соотношение (6) решает задачу определения фазовой скорости ПИВ по угломерно-доплеровским данным. Экспериментальные результаты подтверждают действенность предложенного метода. В настоящее время проводятся регулярные натурные наблюдения, использующие результаты данной работы.

Работа выполнена при поддержке РФФИ (грант 98-02-16831).

Литература

- 1. Физика верхней атмосферы Земли / Под редакцией К.О. Хайнса и др. Л., 1971.
- 2. Briggs B.N. // J. Atm. Terr. Phys. 1968. 30. P. 1777.
- Гусев В.Д., Раджабов Т.С. // Геомагнетизм и аэрономия. 1989. 29, № 5. С. 849.
- Дробжев В.И. и др. // Геомагнетизм и аэрономия. 1991.
 31, № 3. С. 423.
- 5. Гайлит Т.А., Гусев В.Д., Иванов М.И., Перекалина Е.О. // Там же. 1982. 22, № 5. С. 753.
- 6. Гусев В.Д., Вологдин А.Г. // Там же. 1998. 38, № 5. С. 178.
- 7. Гусев В.Д., Карабанов Н.В., Кирьянов Д.В. // Вестн. Моск. ун-та. Физ. Астрон. 1996. № 2. С. 35 (Moscow University Phys. Bull. 1996. No. 2. Р.32).
- Бат М. Спектральный анализ в геофизике. М.: Наука, 1980.

Поступила в редакцию 23.12.98