University Phys. Bull. 1999. No. 5).

распределения ионов.

Литература

P. 2664.

37. C. 729.

электрические поля могут повлиять на вид функции

1. Двинин С.А., Довженко В.А., Кузовников А.А. // Вестн.

3. Ивановский Г.Ф., Петров В.И. Ионно-плазменная обра-

5. Hamaguchi S., Farouki R.T., Dalvie M. // Phys. Rev. 1991. A44.

6. Бакит Ф.Г., Мойжес Б.Я., Немчинский В.А. // ЖТФ. 1967.

Поступила в редакцию

28.12.98

2. Langmuir I., Tonks L. // Phys. Rev. 1929. 34. P. 876.

ботка материалов. М.: Радио и связь, 1986.

4. Lawler J.E. // Phys. Rev. 1985, A32. P. 2977.

Моск. ун-та. Физ. Астрон. 1999. № 5. С. 13 (Moscow

клонения рассчитанных ФРПИ от экспериментальных могут быть связаны с тем, что не учитывается зависимость сечения перезарядки от энергии ионов, а также упругое рассеяние ионов на нейтралах, так как рассеянные ионы имеют большую энергию. Поэтому приведенные результаты расчетов количественно правильно описывают ФРПИ в чистых газах, когда сечение перезарядки много больше сечения упругого рассеяния, либо при длинах свободного пробега, существенно превышающих радиус Дебая, когда вероятность рассеяния быстрых ионов мала в силу малой пространственной протяженности области ускорения ионов. Вопросы устойчивости разряда с неравновесной функцией распределения ионов по энергиям мы в данной работе не рассматриваем, хотя известно, что генерируемые при неустойчивости нестационарные

УДК 537.876.23

О ВОЗМОЖНОСТИ СЕЛЕКТИВНОГО ВОЗБУЖДЕНИЯ ХАРАКТЕРИСТИЧЕСКИХ ВОЛН НА ДВУХСКАЧКОВОЙ ИОНОСФЕРНОЙ РАДИОТРАССЕ

В. В. Балинов, Ю. В. Березин, О. Ю. Волков

(кафедра радиофизики)

Обсуждаются возможности улучшения качества передачи информации на двухскачковых ионосферных радиотрассах. Показано, что комбинация метода селективного возбуждения характеристических волн в ионосфере и метода поляризационной фильтрации многолучевого сигнала при определенной величине отношения сигнал/шум может улучшить качество передачи информации на двухскачковой радиотрассе более чем на порядок.

На двухскачковых ионосферных радиотрассах в точку приема, как правило, приходят четыре магнитоионные компоненты (характеристические волны — XB), которые там интерферируют, снижая качество передачи информации.

Цель данной работы — построить модель адаптивного ионосферного канала связи (ИКС), имитирующего распространение радиоволн на двухскачковой радиотрассе, показать возможность настройки канала на работу только с одной ХВ и получить сравнительные оценки помехоустойчивости приема информации при использовании в точке приема одного и нескольких лучей.

В понятие ИКС включаются аппаратура передающего пункта, передатчик, антенны, подстилающая поверхность, ионосфера, поверхность Земли после первого скачка, аппаратура приемного пункта и другие факторы.

Модель ИКС

Пусть передатчик имеет два независимых канала излучения с регулируемыми комплексными коэффициентами передачи; выходы этих каналов нагружены на ортогональные антенны X, Y (рис. 1), и такая система обеспечивает излучение эллиптически поляризованной волны с произвольным фазором P. Будем считать, что в рассматриваемом ИКС электромагнитная волна распространяется между передающим и приемным пунктами с помощью двух «скачков», каждый из которых соответствует односкачковой радиотрассе. Предполагается, что среда распространения линейна и принцип суперпозиции выполняется для всего ИКС.

Распространение волны между передатчиком и приемником происходит следующим образом. Излученная передающей системой волна возбудит на первой односкачковой радиотрассе две характеристические волны (XB_1 и XB_2). Эти волны отражаются от поверхности Земли, изменяют свою поляризацию и распространяются на втором участке двухскачковой радиотрассы.

ИОНОСФЕРА

Рис. 1. Схема ионосферной двухскачковой радиотрассы

Поскольку траектории распространения двух XB на первом скачке различны, то в общем случае коэффициенты их отражения от поверхности Земли будут отличаться друг от друга. Также у них будут разные углы и точки входа в ионосферу на втором скачке, следовательно, коэффициенты передачи на второй односкачковой радиотрассе для XB₁ будут отличаться от аналогичных параметров для XB₂.

Достигнув ионосферы, каждая волна вновь возбудит две XB, и, таким образом, при втором скачке из ионосферы выйдут четыре волны: XB₁₁, XB₁₂, XB₂₁ и XB₂₂. На приемном конце радиолинии ортогональные антенны ξ и η принимают суперпозицию этих четырех волн. Приемник содержит поляризационный фильтр [1], напряжение на выходе которого пропорционально $E_{\xi}+WE_{\eta}$, где $E_{\xi,\eta}$ — наведенные в антеннах ЭДС, W — комплексный весовой коэффициент. Фильтр может быть настроен так, чтобы не пропускать одну из четырех XB.

Возможность однолучевого приема в ИКС

На односкачковой радиотрассе настройку ИКС на работу только с одной ХВ можно было осуществить двумя способами: или подавить одну волну при помощи поляризационного фильтра-приемника, или, что более предпочтительно, с помощью соответствующего выбора фазора Р излученной волны селективно возбудить только одну ХВ [2]. На двухскачковой радиотрассе ни одним из этих способов в отдельности исключить три ХВ (из четырех) в общем случае нельзя. Но поставленную задачу можно решить, применив оба этих приема. Выбором фазора Р можно обеспечить подавление на первом скачке какой-либо XB (например, XB₂). Это приведет к отсутствию XB21 и XB22 на выходе из ионосферы после второго скачка. Таким образом, принимаемое антеннами ξ и η поле будет состоять только из двух волн — XB₁₁ и XB₁₂. Для осуществления однолучевого приема можно воспользоваться поляризационным фильтром приемника, выбрав W так, чтобы обеспечить раздельный прием двух оставшихся ХВ. Следовательно, существует принципиальная возможность однолучевого приема в рассматриваемом ИКС.

Алгоритм настройки ИКС на режим однолучевого приема сигнала

Пусть в пункте расположения антенн ξ и η принимаются все четыре XB. Запишем выражение для мгновенной мощности сигнала на выходе поляризационного фильтра для этого случая:

$$S(t) = |U(t)|^{2} =$$

$$= \frac{|P(WK_{x\xi}(t) + K_{x\eta}(t)) + WK_{y\xi}(t) + K_{y\eta}(t)|^{2}}{(1 + |P|^{2})(1 + |W|^{2})}S_{0},$$
(1)

где $K_{x\xi}(t)$, $K_{x\eta}(t)$, $K_{y\xi}(t)$ и $K_{y\eta}(t)$ — комплексные коэффициенты передачи электромагнитного поля от антенн X и Y к антеннам ξ и η , а $S_0 = \text{const}$ — передаваемая мощность. Значе-

ния коэффициентов $K_{x\xi}(t)$ и $K_{x\eta}(t)$ можно определить, подавая излучаемый сигнал только на X-антенну передатчика и измеряя комплексные напряжения $U_{x\xi}(t)$ и $U_{x\eta}(t)$ соответственно на антеннах ξ и η (X-диагностика). При этом $K_{x\xi}(t) = U_{x\xi}(t)/\sqrt{S_0}$, а $K_{x\eta}(t) = U_{x\eta}(t)/\sqrt{S_0}$. Аналогично определим $K_{y\xi}(t)$ и $K_{y\eta}(t)$ (Y-диагностика). Если время перехода от X- к Y-диагностике достаточно мало (много меньше периода доплеровского сдвига частот отдельных XB), то можно считать, что все четыре напряжения U измерены для одного и того же момента времени t.

Выполняя поляризационную диагностику в течение некоторого интервала времени, измерим временные ряды (статистические ансамбли) $U_{x,y;\xi,\eta}$. Тогда, используя формулу (1), получим

$$S(t) = \frac{|P(WU_{x\xi}(t) + U_{x\eta}(t)) + WU_{y\xi}(t) + U_{y\eta}(t)|^2}{(1 + |P|^2)(1 + |W|^2)}.$$
(2)

Анализируя средние и мгновенные значения функции S(t) на основе определенных критериев, можно найти решение обратной задачи — значения P и W, обеспечивающие однолучевой прием в рассматриваемом ИКС.

Сравнительные характеристики работы ИКС на двухскачковой радиотрассе

Для оценки эффективности различных режимов работы ИКС можно использовать понятие о вероятности ошибки [3] при приеме дискретной информации. Была разработана специальная программа, с помощью которой на ЭВМ имитировалась работа радиоприемного устройства в режиме ЧТ-125 при различных видах поляризационной обработки четырех- и двухлучевого сигнала [4]. Считалось, что скрещенные под прямым углом приемные антенны, объединенные системой весового сложения в поляризационный фильтр (П Φ), находятся в поле четырех или двух эллиптически поляризованных волн с разными доплеровскими частотами и в ИКС присутствует аддитивный шум. Мощности всех волн были заданы одинаковыми и не менялись во времени; мощность шума варьировалась так, что отношение сигнал/шум составляло $0,5 \div 10$. Все принимаемые поля были модулированы сигналом ЧТ-125. Для определения вероятности ошибок при передаче информации (рис. 2) использовались радиограммы, содержащие 10⁵ бит, и 7-элементный код Баркера.

Анализировался сигнал, поступавший на вход демодулятора либо с выхода одной линейной антенны (например, ξ), либо с выхода ПФ с весовым коэффициентом $W = W_{opt}$, причем выбор коэффициента W_{opt} обеспечивал подавление на выходе ПФ одной из волн (например, второй).

Результаты этих исследований — вероятность ошибки на выходе демодулятора в функции отношения сигнал/шум при разных способах обработки информационного сигнала — приведены на рис. 2. Видно, что для оптимальной передачи информации на двухскачковой ионосферной радиотрассе необходимо применять комбинированный метод: на первом

Рис. 2. Зависимость вероятности ошибки от уровня шума в канале связи: прием четырех волн на линейную антенну (1) и две антенны с применением ПФ (2); прием двух волн на линейную антенну (селективное возбуждение XB на первом скачке) (3); прием при использовании метода селективного возбуждения одной XB на первом скачке и оптимизированного ПФ на втором (4)

«скачке» нужно применять метод селективного возбуждения одной XB, а на втором — метод оптимизированной поляризационной фильтрации.

Выводы

Качество передачи информации по ИКС можно существенно улучшить, если применять комбиниро-

УДК 519.246,524

ванный метод передачи и приема сигналов: метод селективного возбуждения XB в ионосфере и метод приема векторного поля с помощью оптимизированного поляризационного фильтра. В этом случае на двухскачковой радиотрассе вероятность ошибки при передаче информации по анизотропному ИКС может быть снижена в среднем на порядок.

Литература

- 1. Березин Ю.В., Балинов В.В., Смирнов В.И., Виноградов Ю.Е. // Техника средств связи. Сер. Системы связи. 1981. Вып. 2. С. 10.
- Березин Ю.В., Рыжов Д.Е. // Вестн. Моск. ун-та. Физ. Астрон. 1992. № 2. С. 93 (Moscow University Phys. Bull. 1992. No. 2. P. 87).
- 3. Финк Л.М. Терия передачи дискретных сообщений. М., 1970.
- Арефьева Л.Н., Березин Ю.В. // Вестн. Моск. ун-та. Физ. Астрон. 1990. № 4. С. 34 (Moscow University Phys. Bull. 1990. No. 4. Р. 35).

Поступила в редакцию 01.02.99

ОБНАРУЖЕНИЕ СИГНАЛА В ЭКСПЕРИМЕНТАХ С ПРОБНЫМИ ТЕЛАМИ ПРИ КОРРЕЛИРОВАННЫХ ШУМАХ СИСТЕМЫ РЕГИСТРАЦИИ

А. В. Гусев

(ГАИШ)

Разработана обобщенная методика вычисления пороговой чувствительности в физических экспериментах с пробными телами при коррелированных и нестационарных ланжевеновских шумах системы регистрации.

Введение

Проблема обнаружения слабых воздействий на высокодобротные механические системы с большим временем релаксации τ^* возникает во многих физических экспериментах [1, 2]. Реактивный характер источника сигнала в неустановившемся режиме $\tau^* \gg \hat{\tau}$ ($\hat{\tau}$ — длительность полезного сигнала) делает невозможным непосредственное применение традиционных методов расчета чувствительности радиотехнических устройств [3], разработанных для источников сигнала с активным внутренним сопротивлением R_s . Например, в радиолокации $R_s = R_a$, $R_a = 120 \pi$ [Ом] — антенный эквивалент.

Разрешающая способность в физических экспериментах с пробными телами на современном этапе определяется преимущественно шумами широкополосной системы регистрации (СР). При обобщенном анализе чувствительности установки СР рассматривается как линейный шумящий четырехполюсник [3] с пренебрежимо малыми входным сопротивлением $Z_{11}(p)$ и сопротивлением внутренней обратной связи $Z_{12}(p)$ (p = d/dt). Шумы СР при ланжевеновском описании учитываются путем введения сторонних генераторов шумовой эдс и шумового тока с известными спектральными плотностями (при согласованном приеме $\tau^* \leq \hat{\tau}$ достаточной характеристикой шумов СР является минимальная шумовая температура [3]).

При стационарных и стационарно связанных сторонних источниках шума СР и достаточной длительности $T \gg \tau^*$ интервала наблюдения (0,T) (формально при $T \to \infty$) для расчета пороговой чувствительности в работе [4] использован физически нереализуемый алгоритм обнаружения сигнала на фоне стационарных гауссовых шумов [5, 6]. При статистически независимых шумах СР и конечной длительности интервала наблюдения, которая может оказаться сопоставимой с временем релаксации механической системы, для вычисления пороговой чувствительности системы в работе [7] предлагается использовать оценочно-корреляционно-компенсационный алгоритм [5, 6] обнаружения сигнала на фоне произвольных (в том числе и гауссовых) шумов.