- Арсеньев С.А. // Гидрофизика Северного Каспия. М., 1985. С. 125.
- Арсеньев С.А., Шелковников Н.К. // Метеорология и гидрология. 1985. № 1. С. 77.
- 14. Роджерс Р.Р. Краткий курс физики облаков. Л., 1979.
- 15. Шлихтинг Г. Теория пограничного слоя. М., 1974.
- 16. Хргиан А.Х. Физика атмосферы. Т. 2. Л., 1978.
- 17. Шулейкин В.В. Расчет развития движения и затухания

АСТРОНОМИЯ

УДК 550.383:550.385

тропических ураганов и главных волн, создаваемых ураганами. Л., 1978.

- 18. Morton B.R. // Progress in Aero Sci. V. 7. N.Y., 1966. P. 145.
- Энциклопедия катастроф. Лазерный диск для CD-ROM.
 © Gnome-V and Intel Art, 1994.

Поступила в редакцию 17.03.99

СОВМЕСТНЫЙ АНАЛИЗ ВАРИАЦИЙ ПОТОКОВ И СПЕКТРОВ ИОНОВ В ГЕОМАГНИТНОЙ ЛОВУШКЕ ВО ВРЕМЯ БУРЬ

А. С. Ковтюх

(кафедра космических лучей и физики космоса)

Предложены новые методы анализа адиабатической составляющей вариаций потоков и спектров ионов для радиационных поясов и кольцевого тока по спутниковым данным во время бурь.

Квазидипольная область планетарного магнитного поля является магнитной ловушкой, где частицы удерживаются на замкнутых дрейфовых траекториях (оболочках) и формируют радиационные пояса (РП) и кольцевой ток (КТ). В РП частицы имеют энергию $E \sim 0.1 \div 100$ МэВ, а в КТ — энергию $E \sim 10 \div 100$ кэВ. В качестве инвариантных (не зависящих от азимута) координат дрейфовых траекторий частиц используются параметры L (в экваториальной плоскости для дипольного поля L совпадает с расстоянием от данной частицы до центра Земли, выраженным в радиусах планеты R_E) и B/B_0 (B индукция поля в точке наблюдения, а В₀ — на той же силовой линии в экваториальной плоскости). РП заполняют ловушку целиком, а КТ концентрируется в области $L \approx 5 \div 7$ в спокойные периоды и $L \approx 3 \div 7$ во время бурь.

Хотя стационарный КТ органически входит в структуру РП, динамика его во время геомагнитных бурь принципиально отличается от динамики РП: в КТ движение частиц управляется быстрой конвекцией в скрещенных электрическом и магнитном полях, а в РП — магнитным дрейфом частиц по данной оболочке и медленной радиальной диффузией под действием небольших резких скачков геомагнитного поля (внезапных импульсов), отвечающих флуктуациям давления солнечного ветра на магнитосферу. КТ направлен на запад, и сила его изменяется от сотен тысяч ампер в спокойные периоды до нескольких десятков миллионов ампер во время бурь. На фазе восстановления бурь КТ распадается (затухает до стационарного уровня) под действием ионизационных потерь и питч-угловой диффузии частиц в конус потерь в результате развития ионно-циклотронной и других видов неустойчивости горячей плазмы.

Планетарный КТ был введен, чтобы объяснить наземные наблюдения вариаций геомагнитного поля

во время бурь [1]. Глобальный магнитный эффект КТ (D_{st}) пропорционален суммарной кинетической энергии всех составляющих его частиц, а локальные вариации поля в ловушке связаны в основном с вариациями плотности энергии КТ в данной точке. Средние энергии электронов и ионов в КТ практически совпадают, но взаимодействие частиц с волнами ограничивает электронные потоки критическим уровнем, гораздо более низким по сравнению с ионными. Поэтому магнитный эффект КТ во время бурь определяется в основном ионами (квазинейтральность плазмы обеспечивается притоком ионосферных электронов). Такая теория получила разнообразные и многочисленные экспериментальные подтверждения. Так, по данным ИСЗ «Explorer-45» в спокойные периоды максимум радиального профиля плотности энергии w ионов с E > 1 кэВ и наибольшее ослабление (депрессия) магнитного поля ΔB наблюдаются при L = 3,4 ($w_m \sim 10^{-7}$ эрг/см³, $\Delta B_m \sim 40$ нТ) и хорошо согласуются между собой [2]. Магнитный эффект КТ подробно изучался по данным ИСЗ «Молния-1» [3].

Вариации потоков и спектров частиц в геомагнитной ловушке определяются изменениями магнитного поля во время бурь (адиабатическая вариация) и двумя неадиабатическими эффектами: инжекцией частиц и диссипацией их потоков в результате взаимодействия с волнами, холодной ионосферной плазмой и атомами (молекулами) атмосферы. При адиабатических вариациях, отвечающих изменениям индукции магнитного поля в данной силовой трубке, число частиц каждого вида в трубке сохраняется.

Обратимость адиабатических вариаций потоков частиц и возможность количественного их анализа обеспечиваются тем, что при достаточно медленных изменениях магнитного поля в ловушке первый (μ) и второй (I) интегралы движения частиц сохраняют-

ся, т. е. являются адиабатическими инвариантами [4]. Поскольку характерные времена вариаций геомагнитного поля во время бури намного превышают периоды осцилляций между точками отражения и тем более гиропериоды частиц, эти условия выполняются.

Однако для выделения и количественного анализа адиабатической составляющей вариаций потоков и спектров частиц необходима привязка к магнитным силовым трубкам (дрейфовым оболочкам), которая возможна только при наличии достаточно подробной информации о вариациях поля в ловушке, синхронных с измерениями потоков частиц. Адекватная трехмерная структура поля воспроизводится только по одновременным измерениям в достаточно большом числе точек. До настоящего времени таких подробных экспериментов не проводилось. Между тем при проведении измерений вблизи плоскости геомагнитного экватора выделение и корректный количественный анализ адиабатической составляющей вариаций потоков частиц возможны и по данным одного спутника. Если при этом известна форма энергетического спектра частиц во внешней части ловушки, такой анализ реализуется даже при отсутствии синхронных измерений локального магнитного поля.

В самом деле, для каждой ионной компоненты (H⁺, He²⁺ и т.д.) функции распределения $f_i(\mu, I, L)$ в экваториальной плоскости не меняются при адиабатических вариациях потоков (вне экваториальной плоскости они могут существенно изменяться даже в условиях стабильности магнитного поля вдоль траектории спутника, отвечая на изменения поля на меньших широтах). При этом во внешней части ловушки для достаточно энергичных частиц $\partial f_i/\partial L = 0$ в связи с тем, что времена радиального переноса этих частиц много меньше времени диссипации их потоков. Исходя из таких предпосылок, с помощью теоремы Лиувилля нетрудно получить выражения, связывающие адиабатические вариации потоков частиц с локальными изменениями магнитного поля в экваториальной плоскости. Далее, для простоты будем рассматривать только потоки частиц с питч-углом $\alpha_0 \approx 90^\circ$ (I ≈ 0). Поскольку для каждой из ионных компонент $f_i(L,\mu) \propto j_i[L, E(L,\mu)]/E(L,\mu)$, адиабатическое изменение потоков имеет вид

$$j_i'(E, B_0') = \frac{B_0'}{B_0} j_i \left(E \frac{B_0}{B_0'} \right), \tag{1}$$

где B_0 и B'_0 — индукция в точке наблюдения стационарного и возмущенного магнитного поля соответственно. Соотношение (1) учитывает как расширение магнитных трубок, так и смещение их относительно Земли во время бурь.

На основе соотношения (1) можно построить практическую методику разделения вариаций спектров на адиабатические и неадиабатические. Необходимым условием адиабатичности вариаций является подобие спектров в спокойные периоды и во время бури (в целом или на отдельных участках), построенных в двойном логарифмическом масштабе. В этом случае для указанных участков спектров j'(E) = aj(bE), где *a* и *b* — постоянные величины. При $a = b = B'_0/B_0$ выполняется не только необходимое, но и достаточное условие адиабатичности вариаций на данном участке спектров и можно найти B'_0/B_0 . Так, для степенных ($j \propto E^{-\gamma}$) спектров (они совмещаются друг с другом, только когда $\gamma' = \gamma$)

$$\ln \frac{B_0'}{B_0} = \frac{\Delta \ln j}{\gamma + 1},\tag{2}$$

где $\Delta \ln j \equiv \ln[j'(E, B'_0)/j(E, B_0)]$, а для экспоненциальных ($j \propto \exp[-E/E_0]$, где E_0 — средняя энергия частиц) спектров (совместить их можно, только если $E'_0/E_0 = B'_0/B_0$)

$$\ln \frac{B'_0}{B_0} = \Delta \ln j + \left(\frac{E}{E'_0} - \frac{E}{E_0}\right),$$
 (3)

где значения потоков берутся при фиксированной энергии частиц.

Если в некоторых энергетических интервалах спектры различных ионных компонент подобны, т.е. $j_m(E/\xi_m)/j_n(E/\xi_n) = \text{const}$, но форма спектров неизвестна заранее, то выделение и анализ адиабатической составляющей по данным одного спутника возможны только для вариаций отношений потоков и спектральных параметров различных ионных компонент. Скейлинговые параметры ξ_i инвариантны относительно адиабатических преобразований спектров, причем при достаточно больших μ (> 1 кэB/нT) они не меняются во время бурь [5], что позволяет разделять вариации на адиабатическую и неадиабатическую составляющие. При этом границы интервалов подобия спектров и значения ξ_i могут быть неизвестны заранее. Они находятся в результате анализа зависимости амплитуды пространственно-временных вариаций $j_m(E/\zeta_m)/j_n(E/\zeta_n)$ от ζ_i (i=m или n)для различных ионных компонент: при $\zeta_i = \xi_i$ амплитуда этих вариаций минимальна (равна нулю).

Например, для ионов (*i*) и протонов (H), имеющих подобные (с коэффициентом подобия ξ_i) экспоненциальные спектры ($E_{0i}/\xi_i = E_{0H}$), адиабатическое изменение логарифма отношения потока ионов с энергией $E/\zeta_i = E_H$ к потоку протонов с энергией E_H может быть записано в виде

$$\Delta \ln j_i - \Delta \ln j_{\rm H} = \left(\frac{\zeta_i}{\xi_i} - 1\right) \left(1 - \frac{B_0}{B'_0}\right) \frac{E_{\rm H}}{E_{\rm 0H}} = = \left(\frac{\zeta_i}{\xi_i} - 1\right) \left(\frac{B'_0}{B_0} - 1\right) \frac{E_{\rm H}}{E'_{\rm 0H}}.$$
(4)

Из (4) следует, что если $\xi_i = \zeta_i$, то локальные вариации магнитного поля не меняют отношений потоков протонов к потокам других ионных компонент; при $\xi_i < \zeta_i$ вариации $j_i/j_{\rm H}$ $(E/\zeta_i = E_{\rm H})$ коррелируют, а при $\xi_i > \zeta_i$ — антикоррелируют с вариациями B_0 .

Первый из этих выводов (для случая $\xi_i = \zeta_i$) инвариантен относительно формы ионных спект-

ров. Остальные два вывода справедливы не только для экспоненциальных спектров, но и для подобных (с коэффициентом ξ_i) монотонно спадающих спектров любой другой формы, удовлетворяющей условию

$$\left| \left| rac{d \ln j}{d \ln E}
ight|_{E_1} < \left| rac{d \ln j}{d \ln E}
ight|_{E_2}$$

где $E_1 < E_2$. Если форма ионных спектров не удовлетворяет последнему условию, то при $\xi_i > \zeta_i$ вариации $j_i/j_{\rm H}$ коррелируют, а при $\xi_i < \zeta_i$ антикоррелируют с B_0 .

В результате анализа и систематизации спутниковых данных за 1965-1994 гг. методом «спектрометра с магнитным парусом» для области адиабатичности найдены основные параметры стационарных энергетических спектров ионов H⁺, He⁺, Не²⁺ и группы СПО в КТ и РП Земли [5]. Переходя от Е к µ при расчете спектров, получаем инвариантную их форму, которая не зависит от L и очень удобна для анализа. Для ионов с $\alpha_0 \approx 90^\circ$ величина $\mu = E/B_0$. В стационарных условиях $\mu_m/\xi_i \approx (0.5\pm0.2)$ кэВ/нТ отвечает максимуму в ионных спектрах, при $\mu_m/\xi_i < \mu/\xi_i < \mu_b/\xi_i$ эти спектры имеют экспоненциальную форму с постоянной $E_0/B_0\xi_i=\mu_0/\xi_i=(0.35\pm0.25)$ кэВ/нТ и при $\mu/\xi_i > \mu_b/\xi_i = (1,4 \pm 0,8)$ кэВ/нТ — степенную форму с показателем $\gamma = 4,7 \pm 2,2$. При изменении солнечной активности от минимума к максимуму ξ_i изменяется от M_i к Q_i (Q_i — заряд ионов по отношению к заряду электрона, M_i — масса ионов по отношению к массе протона). Для протонного спектра были получены более точные параметры: $\mu_m pprox (0.55 \pm 0.10)$ кэ $\mathrm{B/HT}, \ \mu_0 = (0.31 \pm 0.11)$ кэ $\mathrm{B/HT},$ $\mu_b = (1,16\pm0,29)$ кэ $\mathrm{B/HT}$ и $\gamma = 4,25\pm0,75$ [6, 7].

Рассмотренные здесь взаимосвязи между вариациями потоков ионов во время бурь и формой их энергетических спектров хорошо прослеживаются по данным «Молнии-1» при $L \sim 3 \div 5$ ($B/B_0 < 2$), а также по данным ИСЗ «Горизонт-21» и «Горизонт-35» с геостационарной орбиты (ГСО).

Так, по данным «Молнии-1» [8], во время бури 31.03 1973 г. потоки протонов с $E_1 = 100 \div 235$ кэВ возрастали в $\sim 1,75$ раза при L = 3,5 и уменьшались в $\sim 1,93$ раза при L = 5; потоки протонов с $E_2 = 235 \div 370$ кэВ уменьшались в $\sim 1,6$ раза при L = 3,5 и в ~12,6 раза при L = 5. Различие амплитуд и характера вариаций потоков протонов с $E = E_1$ и $E = E_2$ можно связать с наличием в спектре максимума. В спокойные периоды, судя по приведенным результатам, при L = 3,5 этот максимум локализуется в конце, а при L = 5 — в начале рассматриваемого интервала (100 ÷ 370 кэВ). Эти данные отвечают адиабатическим вариациям спектра протонов с максимумом при $\mu_m \sim 0.55$ кэВ/нТ (в спокойные периоды этой величине отвечают значения $E_m \sim 400$ кэВ при L = 3,5 и $E_m \sim 140$ кэВ при L = 5). При L = 5 бо́льшая часть протонов с $E = E_2$ принадлежит степенному участку спектра; учитывая, что для рассматриваемого события $\Delta \ln j_2 \approx -2,53$ (L = 5), а $\gamma \approx 4,25 \pm 0,75$, по формуле (2) находим: $B_0'/B_0 = 0.63^{+0.02}_{-0.15}$

По данным «Горизонта-21» [9] спектр протонов на ГСО имел максимум при $E_m \approx 60 \div 70$ кэВ до бури и при $E_m' \approx 70$ кэВ во время бури 27.02 1985 г.; при $E > E_m$ протонный спектр имел очень близкую к экспоненциальной форму и $E'_0/E_0 \approx 2,2,$ где E_0 и E'_0 — значения средней энергии протонов до и после начала бури соответственно, т.е. $E'_m/E_m < E'_0/E_0$ (при адиабатических преобразованиях спектров $E'_0/E_0 = E'_m/E_m$). Эти результаты отвечают инжекции на ГСО протонов с E < 100 кэB, причем бо́льшая часть свежеинжектированных частиц имеет энергию E < 70 кэВ. В районе ГСО во время главной фазы бурь (при $K_p > 4$) величина B_0 возрастает. Поэтому уменьшения $j_i/j_{\rm H} (E/Q_i \sim 100 \, {\rm кэB})$, наблюдаемые в эти периоды по данным «Горизонта-21» [9, 10], отвечают спектрам многозарядных ионов, более пологим по сравнению с протонными. В районе ГСО значение $E/Q_i \sim 100$ кэВ приходится на экспоненциальный участок спектров и, следовательно, локальное увеличение магнитного поля должно приводить к возрастанию j и E_0 в фиксированном энергетическом интервале, что подтверждается приведенными в [9, 10] результатами.

Динамику спектров ионов H⁺, He²⁺ и O⁺ с $E/Q_i \sim 40 \div 130$ кэВ на ГСО во время бурь можно проследить по данным «Горизонта-35» [11–12]. Согласно этим результатам, адиабатические вариации надежно отделяются от неадиабатических, причем с уменьшением энергии влияние последних быстро возрастает. Изменения $j_i/j_{\rm H}$ во время активных периодов бурь отвечают инжекции частиц в КТ, причем преимущественно протонов, о чем говорит знак вариаций $j_i/j_{\rm H}$.

Работа выполнена при поддержке РФФИ (грант 97-02-16870).

Литература

- Chapman S., Ferraro V.C.A. // Terrestr. Magn. Atm. Elec. 1932.
 37. P. 147.
- 2. Lee Yue C., Cahill L.J., Jr. // J. Geophys. Res. 1975. 80. P. 1003.
- 3. Ковтюх А.С., Панасюк М.И., Сосновец Э.Н. // Космич. исслед. 1977. 15. С. 559.
- Alfven H. Cosmical Electrodynamics. Oxford: Clarendon Press, 1950.
- 5. Ковтюх А.С. // Космич. исслед. 1999. 37. С. 57.
- 6. Ковтюх А.С. // Геомагнетизм и аэрономия. 1985. 25. С. 23.
- 7. Ковтюх А.С. // Геомагнетизм и аэрономия. 1989. 29. С. 26.
- Ковтюх А.С., Матвеева Э.Т., Панасюк М.И. и др. // Космич. исслед. 1975. 13. С. 942.
- 9. Власова Н.А., Ковтюх А.С., Панасюк М.И. и др. // Там же. 1988. 26. С. 746.
- 10. Власова Н.А., Ковтюх А.С., Панасюк М.И. и др. // Там же. 1988. **26**. С. 881.
- 11. Ковтюх А.С., Мартыненко Г.Б. // Там же. 1996. 34. С. 115.
- 12. Ковтюх А.С. // Там же. 1998. 36. С. 142.

Поступила в редакцию 30.12.98