УДК 550.348

СЕЙСМОТЕКТОНИЧЕСКАЯ ДЕФОРМАЦИЯ ЛИТОСФЕРЫ ЭГЕЙСКОГО РЕГИОНА

Е. В. Воронина, А. В. Люсина

(кафедра физики Земли)

Рассчитаны тензоры скорости сейсмотектонической деформации литосферы Эгейского региона, ее главные и эффективные значения. Определена ориентация осей деформации сжатия и растяжения. Впервые установлена связь возможного разрушения среды с величиной эффективной скорости деформации. Наблюдение сильных землетрясений 1991–1997 гг. показало, что областями повышенной сейсмической опасности являются области минимальных скоростей деформации.

Постановка задачи и методы исследования

Сейсмотектоническая деформация реальной геофизической среды, как правило, связана с необратимыми процессами в очагах землетрясений [1]. Сдвиг, характерный для большинства землетрясений, вследствие механизма внутреннего трения между берегами разрыва можно представить как вязкое разрушение, которое связано с малыми скоростями нагружения среды и сопровождается пластическими деформациями [2, 3].

В пространстве главных деформаций условие разрушения среды формулируется как критерий Мизеса–Генки [3]. При малых деформациях, с которыми мы в данном случае имеем дело, этот критерий может быть сформулирован и для скоростей деформации, тензор которых отличается от тензора деформаций только на величину временного множителя. При этом условии критическая скорость деформации, характеризующая начало процесса разрушения сплошности среды $\dot{\varepsilon}_0$, определится так [2]:

$$\left[(\dot{\varepsilon}_1 - \dot{\varepsilon}_2)^2 + (\dot{\varepsilon}_2 - \dot{\varepsilon}_3)^2 + (\dot{\varepsilon}_3 - \dot{\varepsilon}_1)^2 \right]^{1/2} \leqslant \sqrt{2} \, \dot{\varepsilon}_0, \ (1)$$

где $\dot{\epsilon}_1, \dot{\epsilon}_2, \dot{\epsilon}_3$ — главные значения тензора скорости деформации. Эта формула объединяет условие пластического течения и деформационный критерий разрушения.

Вычисление скорости сейсмотектонической деформации проводится методом суммирования матриц, образованных из диадных произведений векторов нормали и подвижки. При этом предполагается, что ориентация остаточных смещений при землетрясениях совпадает с направлением вспарывания. Тензор скорости сейсмотектонической деформации может быть определен следующим образом [1, 3–5]:

$$\dot{\varepsilon}_{ik} = \frac{1}{2\mu VT} \sum_{j=1}^{N} M_{j,ik}^{0}, \qquad (2)$$

где $\sum_{j=1}^{N} M_{j,ik}^{0}$ — суммарный сейсмический момент землетрясений, μ — модуль жесткости среды, V —

землетрясении, μ — модуль жесткости среды, v — сейсмогенный объем, T — период наблюдений. Ком-

поненты тензора сейсмического момента $M_{j,ik}^0$ рассчитываются по угловым параметрам механизмов очагов землетрясений [5]. Основной вклад в величину сейсмотектонической деформации дают сильные землетрясения, и землетрясениями малой магнитуды можно пренебречь.

Определенный таким образом тензор скорости сейсмотектонической деформации $\dot{\varepsilon}_{ik}$ является девиатором. Его квадратический инвариант, определенный в [2, 3]:

$$I_{2} = \frac{1}{6} \Big[(\dot{\varepsilon}_{1} - \dot{\varepsilon}_{2})^{2} + (\dot{\varepsilon}_{2} - \dot{\varepsilon}_{3})^{2} + (\dot{\varepsilon}_{3} - \dot{\varepsilon}_{1})^{2} \Big]^{1/2}, \quad (3)$$

описывает эффективную скорость деформации и с точностью до множителя равен левой части выражения (1).

Целью настоящей работы был расчет тензора сейсмотектонической деформации, его главных значений и инвариантов. По этим величинам также были определены ориентации осей деформации сжатия и растяжения и предсказаны области повышенной сейсмической опасности [6], которые сравнивались с наблюдениями, а именно с эпицентрами последовавших сильных землетрясений.

Тектоника и сейсмичность исследуемого региона

Геологические данные свидетельствуют о разнообразном блоковом строении Эгейского региона, характерном как для земной коры, так и для верхней мантии до глубин по крайней мере 200 км. Выделяются следующие блоковые структуры: окраина Африканской плиты; область внешних Эллинид и Таврид, формирующая структуры Эллинской дуги; Южно-Эгейская плита, включающая в себя Критскую впадину; зоны грабенов западной Турции; Родосский и Понтийский блоки на севере Греции. Средняя мощность земной коры в районе западной Греции около 50 км, в центральной части Эгейского моря — 30 км, в районе западной Турции — 40 км, в литосфере Средиземного моря — 10 км [7–10].

По данным сейсмической томографии, в литосфере Эгейского региона наблюдается мощная астеносферная зона, начинающаяся на поверхности в районе Эллинской дуги и падающая под углом 35° на север вплоть до глубин 400 км. В северной части Эгейского моря и под Мраморным морем она прослеживается до глубин 180 км. Границы астеносферной зоны совпадают с современной сейсмофокальной зоной [7, 11]. В пределах земной коры области наибольшей сейсмической активности приурочены главным образом к крупным разломным структурам, имеющим выход на поверхность. Слабой сейсмичностью характеризуется область вулканической дуги [12–14]. Литосфера южной части Эгейского моря представляет собой квазиоднородную структуру, которая расширяется и одновременно колеблется в субширотном направлении, что обусловливает высокую сейсмическую активность по ее краям. На поверхности наблюдается чередование областей сжатия и растяжения [14].

Деформационные процессы в регионе изучались разными авторами [8-12, 14]. Взаимодействие литосфер Средиземного и Эгейского морей определяет составляющую деформации сжатия, ориентированную по направлению поддвига Африканского континента под Евразию. Другим мощным тектоническим процессом является скольжение в направлении вдоль Северо-Анатолийского разлома и его продолжение в северной части Эгейского моря, приводящее к перемещению в юго-западном направлении отдельных структур континентальной части южно-эгейского блока. Средиземноморская плита во внешней части Эллинской дуги формирует разрывы типа взбросов. Это приводит к подъему вещества земной коры, его растрескиванию и как следствие — к утолщению сейсмогенного слоя с образованием более мелких блоковых структур [7, 14]. Во всех упомянутых работах исследование деформаций ограничивалось определением ориентации деформационных процессов.

Исходные данные

В настоящей работе использовались данные каталога механизмов очагов землетрясений за 1964–1990 гг. [15], а также данные гарвардского каталога за период с 1991 по 1998 г. Рассматривался район, ограниченный координатами (20-30)° в.д. и (34-42)° с. ш. На рис. 1 показана карта эпицентров землетрясений с разными магнитудами. Рассматривался интервал магнитуд $4,2 \leqslant Mw \leqslant 6,3$, где *Мw* — моментная магнитуда. Наиболее сильное за исследуемый период землетрясение типа взброса произошло 31 марта 1995 г. в районе Коринфского залива на глубине 45 км. Коринфский залив оказался районом максимальной сейсмической активности. Еще одно землетрясение, с магнитудой 6,0, произошло здесь же 15 июня 1995 г. Как видно из рис. 1, в южной части Эгейского моря действительно сильных землетрясений не было.

На рис. 2 изображены механизмы очагов наиболее сильных землетрясений, произошедших в 1964–1990 гг. Ориентация разломов, выходящих на поверхность, получена по данным разных авторов [8–10]. По механизмам очага можно судить о типе

Рис. 1. Карта эпицентров землетрясений Эгейского региона различной магнитуды: 1 - 4,0 < Mw < 4,9;2 - 5,0 < Mw < 5,5; 3 - 5,6 < Mw < 5,9;4 - 6,0 < Mw < 6,5

Рис. 2. Механизмы очагов наиболее сильных землетрясений (1); разломы, выходящие на поверхность (2); смещения по разломам (3) и простирание Эллинской дуги (4)

напряжений, характерных для различных структур региона. Так, в юго-западной части Эллинской дуги имеют место напряжения сжатия, а в юго-восточ-

ной ее части, так же как и на территории западной Турции, — напряжения растяжения. Механизмы очагов землетрясений, приуроченных к структурам Северо-Анатолийского разлома и его продолжения в северной части Эгейского моря, представляют собой правосторонний сдвиг с осью растяжения, ориентированной субмеридионально.

Результаты расчетов

Рассматриваемый регион был разбит на отдельные сейсмогенные объемы, соответствующие участкам земной поверхности $1^{\circ} \times 1^{\circ}$. Мощность сейсмогенного объема в среднем принималась равной 20 км. Средний модуль жесткости в среде принимался равным $\mu = 3 \cdot 10^{10} \text{ H} \cdot \text{m}^2$. Репрезентативность наблюдений различна; наиболее достоверные результаты получены для районов восточной Греции, Эллинской дуги и западной Турции.

Расчеты подтвердили, что доминирующей деформацией в регионе является деформация растяжения. Растяжение характерно для большинства районов Эгейского моря, северо-востока Греции, западной части острова Крит и западной Турции. На рис. 3 представлена ориентация главных осей деформации растяжения и сжатия в проекции на земную поверхность по всем элементам структуры. Видно, что деформация растяжения в юго-западной части Турции ориентирована субширотно, а в северной части Эгейского моря, в районах северо-западной Турции и западной Греции — субмеридионально. Южная часть Эгейского моря представляет собой почти асейсмич-

Рис. 3. Ориентация главных осей деформации: сжатия (1), растяжения (2); простирание основных разломов (3) и смещения по ним (4); простирание Эллинской дуги (5)

Рис. 4. Расчетное распределение эффективной скорости сейсмотектонической деформации $\dot{\varepsilon}$ за период 1964–1990 гг и эпицентры наиболее сильных землетрясений за период 1991–1997 гг. $1 - \dot{\varepsilon} \ge 5 \cdot 10^{-7}$; $2 - 10^{-7} \le \dot{\varepsilon} \le 5 \cdot 10^{-7}$; $3 - 10^{-8} \le \dot{\varepsilon} \le 10^{-7}$; $4 - 10^{-9} \le \dot{\varepsilon} \le 10^{-8}$; $5 - 10^{-10} \le \dot{\varepsilon} \le 10^{-9}$; $6 - \dot{\varepsilon} \le 10^{-10}$; 7 -очаги землетрясений за период 1991–1997 гг.; 8 - простирание Эллинской дуги

ную, квазиоднородную, расширяющуюся структуру. Окаймляющие ее территории Пелопоннеса и юго-западной Турции как бы раздвигаются. Интересно, что западная половина острова Крит испытывает деформацию растяжения как в горизонтальной, так и в вертикальной плоскости, а восточная — деформацию сжатия по глубине и в направлении восток запад.

В районах внешней части Эллинской дуги, на побережье Ионического моря, западнее и восточнее острова Крит преобладает деформация сжатия. Здесь ориентации главных осей сжатия и растяжения близки друг к другу, что свидетельствует о вертикальном характере смещений на границах блоков, соответствующих этим структурам. Сжатие как в горизонтальной, так и в вертикальной плоскости наблюдалось в восточной части Пелопоннеса, в районе острова Родос, а также в Средиземном море, к юго-западу от Крита. Главная ось сжатия в проекции на земную поверхность в районе Эллинской дуги и для всего региона в целом ориентирована в направлении 12° на северо-восток.

В северной части Эгейского моря, в районах восточной Греции и северо-западной Турции оси деформаций сжатия и растяжения почти ортогональны друг другу, что характеризует преимущественное сдвиговое смещение на границах соответствующих объемов. В районе Коринфского залива в Греции

	Координаты очага			Магнитита	Район
Дата	широта (градусы с. ш.)	долгота (градусы в. д.)	глубина (км)	Манитуда, Mw	землетрясения
06.11.1992	37,84	26,98	24,5	6,0	Эгейское море
23.05.1994	35,02	24,89	80,8	6,1	о. Крит
13.05.1995	39,89	21,90	15	6,5	Греция
15.06.1995	38,10	22,46	15	6,5	Греция
01 10 1995	38,06	29,68	15	6,4	Турция
20.07.1996	36,07	26,92	15	6,2	о-ва Додеканес
13.10.1997	36,10	22,04	44,2	6,4	Ю. Греция
18 11 1997	37,33	20,84	22,9	6,6	Ионическое море

растяжение по вертикали и в направлении север — юг сопровождается сжатием в направлении восток — запад. На территории Пелопоннеса сжатие по вертикали и в направлении восток — запад сопровождается растяжением в направлении северо-запад — юго-восток.

На рис. 4 представлена карта распределения эффективной скорости деформации по наблюдениям 1964-1990 гг. Эти результаты получены авторами впервые. Область максимальной эффективной скорости деформации, равной $7 \cdot 10^{-7}$ год⁻¹, расположена в восточной части Коринфского залива. Интенсивные деформации наблюдались также во внешней части Эллинской дуги и в северной части Эгейского моря. Области малых деформаций расположены в восточной части острова Крит, у восточного побережья Греции и в юго-западной части Турции. Минимальная скорость деформации, равная $8 \cdot 10^{-10}$ год⁻¹, была получена для района восточнее острова Крит, где 23.05.1994 г. и произошло сильное землетрясение. На рис. 4 приводятся также эпицентры землетрясений с магнитудой более 6,0, произошедшие в рассматриваемом нами регионе за период с 1991 по 1997 г. включительно. Данные об этих землетрясениях даны в таблице.

Эпицентры сильнейших для данного региона землетрясений (см. таблицу) расположены в областях минимальной эффективной деформации. Наиболее сильное из них произошло 18.11.1997 г. в районе внешней части Эллинской дуги (Ионическое море). Эпицентр его расположен в области, где эффективная деформация на два порядка меньше максимальной. Землетрясения 1.10.1995 г. на юго-западном побережье Турции, а также 13.10.1997 г. произошли в областях, где деформации ниже определяемого нами уровня. Исключение составляет землетрясение в районе Коринфского залива, что требует дополнительного исследования.

Заключение

Проведенное исследование впервые показало, что доминирующим деформационным процессом в Эгейском регионе является деформация растяжения. Она

характерна для большинства районов Эгейского моря, включая Критскую впадину, областей центральной Греции и западной Турции. В южной части Эгейского моря деформация растяжения ориентирована в направлении восток — запад таким образом, что структуры Пелопоннеса и западной Турции как бы раздвигаются. При этом земная поверхность о-ва Крит в западной части сжимается, а в восточной расширяется.

За исследуемый нами период основным тектоническим процессом, определяющим деформацию Эгейского региона, является смещение блоков по Северо-Анатолийскому разлому и его продолжению в северной части Эгейского моря. Этот вывод отличается от распространенного представления о том, что геодинамику региона определяет взаимодействие Африканской плиты с континентальной окраиной Европы в области Эллинской дуги.

Эпицентры большинства сильных землетрясений за период с 1991 по 1997 г. расположены в областях минимума эффективной скорости деформации. Таким образом, можно утверждать, что области минимальных значений скорости сейсмотектонической деформации являются областями повышенной сейсмической опасности. Этот параметр деформационного процесса можно использовать как перспективный в прогнозе места возможного сильного землетрясения.

Литература

- 1. Юнга С.Л. Методы и результаты изучения сейсмотектонических деформаций. М.: Наука, 1990.
- 2. Ионов В.Н., Селиванов В.В. Динамика разрушения деформируемого тела. М.: Машиностроение, 1987.
- Ильюшин А. А. Механика сплошной среды. М.: Изд-во Моск. ун-та, 1990.
- Костров Б.В. // Изв. АН СССР, Физика Земли. 1974. № 1. С. 23.
- 5. Аки К., Ричардс П. Количественная сейсмология. М.: Мир, 1983.
- Воронина Е.В., Люсина А.В. // Вестн. Моск. ун-та. Физ. Астрон. 1997. № 6. С. 53 (Moscow University Phys. Bull. 1997. No. 6. Р. 74).

- Соловьев С.Л., Ковачев С.А., Кузин И.П., Воронина Е.В. Микросейсмичность Эгейского и Тирренского морей по наблюдениям донных сейсмографов. М.: Наука, 1993.
- Eydogan H., Jackson J. // Geophys. J. Roy. Astron. Soc. 1985.
 81. P. 569.
- 9. Jackson J., McKenzie D. // Geophys. J. 1988. 93. P. 45.
- 10. McKenzie D. // Geophys. J. Roy. Astron. Soc. 1972. 30. P. 109.
- 11. Kiratzi A. // Pure and Appl. Geophys. 1991. 136, No. 3. P. 421.
- 12. Kiratzi A. // Tectonophys. 1993. 225. P. 191.
- 13. Papazachos B.C. // Tectonophys. 1990. 178. P. 287.
- 14. Papazachos B.C., Kiratzi A. // Tectonophys. 1996. 253. P. 129.
- 15. Мострюков А.О., Петров В.А. Каталог механизмов очагов землетрясений 1964–1990. М.: Наука, 1994.

Поступила в редакцию 24.02.99