ФИЗИКА ТВЕРДОГО ТЕЛА

УДК 537.611.46

К ИНТЕРПРЕТАЦИИ ЯВЛЕНИЙ АНОМАЛЬНОГО ВОЗРАСТАНИЯ КОЭРЦИТИВНОЙ СИЛЫ И МАГНИТНОЙ ВЯЗКОСТИ ФЕРРИТОВ В ОБЛАСТИ ТОЧКИ КЮРИ

К. П. Белов

(кафедра общей физики для естественных факультетов)

На основе представления об однонаправленной обменной анизотропии дано объяснение явлениям аномального возрастания коэрцитивной силы и магнитостатической вязкости в области точки Кюри, обнаруженным в свое время в ряде ферритов и не получившим до сих пор адекватной интерпретации.

В последнее время было показано [1], что в ферритах в области их точки Кюри проявляется однонаправленная обменная анизотропия, которая вызывает аномальные явления в поведении намагниченности, магнитной восприимчивости и магнитокалорического эффекта.

В настоящей работе на основе представления об этом виде анизотропии дается объяснение аномальному росту коэрцитивной силы (H_c) и магнитостатической вязкости (τ) в области точки Кюри T_C , обнаруженным в ферритах [2–7].

Рассмотрим экспериментальные данные по температурной зависимости H_c в области точки Кюри ферритов. На рис. 1 изображены приведенные в работе [2] зависимости коэрцитивной силы H_c и начальной восприимчивости μ_0 (измеренной в слабом поле $H \approx 5$ –10 Э) от температуры для монокристалла Mn–Mg феррита-шпинели состава 2,2MgO; 54MnO; 43,8Fe₂O₃, выращенного методом Вернейля. Видно,

Рис. 1. Температурные зависимости коэрцитивной силы H_c и начальной восприимчивости μ_0 в точке Кюри монокристалла феррита 2,2MgO; 54MnO; 43,8Fe₂ O₃

что при приближении к T_C (где μ_0 обращается в нуль) H_c резко возрастает.

Особенно большое возрастание H_c (до 250 Э) было отмечено при подходе к T_C в феррите-гранате гадолиния [3] (рис. 2). Этот факт удивителен, так как в магнитоупорядоченных веществах гистерезисные явления интенсивно проявляются вдали от точки Кюри, как результат необратимого смещения доменных границ и вращения вектора намагниченности. Тем не менее, как следует из рис. 2, при низких температурах величина H_c в данном феррите составляет несколько эрстед^{*}).

Рис. 2. Температурная зависимость коэрцитивной силы H_c феррита-граната 3Gd 2 O 3; 0,2Y 2 O 3; 4,8Fe 2 O 3 (поликристалл)

Еще более удивительным является обнаруженное авторами [5] возрастание H_c в некоторых ферритах-шпинелях в области температур выше точки Кюри.

Возрастание H_c в области T_C до сих пор пытались интерпретировать тем, что на коэрцитивную силу ферритов сильное влияние оказывают структурные несовершенства измеряемых образцов. Но это не подтверждается измерениями H_c на монокристаллах

^{*)} Объяснение аномального возрастания H_c в области точки магнитной компенсации $\Theta_{\rm com}$ будет дано в последующей статье автора.

ферритов и тем, что в ферритах-гранатах, так же как и в ферритах-шпинелях, аномалии H_c существуют, хотя первые обладают более правильной структурой (отсутствие вакантных позиций магнитных катионов). Зависимости H_c от T для поликристаллических образцов феррита-граната иттрия, обладающих различной плотностью ρ , по данным работы [4], показывают (рис. 3), что возрастание H_c выражено сильнее в более плотном образце. Это также противоречит тому, что возрастание H_c связано с влиянием структурных несовершенств образцов.

Рис. 3. Температурная зависимость коэрцитивной силы H_c для поликристаллических образцов Y₃ Fe₅ O₁₂ с разной плотностью: $\rho = 2,8$ (*I*) и 3,5 г/см³ (2)

В связи с данной проблемой представляет интерес проанализировать поведение коэрцитивной силы вблизи Т_С в обычных ферромагнетиках. Экспериментальные данные по температурной зависимости коэрцитивной силы в ферромагнетиках вблизи T_C были рассмотрены в монографии [8]. Приведенные в [8] кривые $H_c(T)$ не обнаруживают возрастания коэрцитивной силы при приближении к точке Кюри. В работе [9] было показано, что в никеле величины H_c , B_r (остаточная индукция) и W_h (потери на гистерезис) при приближении к T_C обращаются в нуль. Форрер [10] исследовал температурные зависимости H_c и B_r в различных ферромагнитных сплавах. Используя собственные данные, а также результаты других авторов, он пришел к выводу, что для всех этих веществ величины H_c , B_r и W_h в точке Кюри обращаются в нуль.

Займовский [11] обнаружил исключение из этого правила, а именно: в сплаве 50% Ni; 50% Fe он наблюдал возрастание H_c при приближении к T_C . Однако позднее было показано, что в данных сплавах обменное взаимодействие между атомами Fe–Fe имеет отрицательный знак (то же имеет место в γ -железе [12]), т. е. в этих сплавах существует антиферромагнитная фаза, и поэтому они по своей магнитной структуре ближе к ферримагнетикам, чем к ферромагнетикам.

Из всего сказанного выше следует вывод, что явление возрастания H_c в области T_C свойственно только ферримагнетикам.

Для интерпретации возрастания H_c в области T_C важно установить, существуют ли в кубических ферритах (на которых в основном проводились измерения H_c вблизи точки Кюри) магнитная анизотропия, магнитные домены (т. е. происходят ли процессы технического намагничивания). Измерения температурной зависимости константы магнитной анизотропии K_1 для феррита-граната иттрия [13] показали, что K_1 обращается практически в нуль при температуре ниже T_C на 50 К, а в магнетите (Fe₃O₄) — ниже T_C на 150–200 К [14]. Из этого следует, что в данных ферримагнетиках в некотором интервале температур ниже T_C существует магнитное упорядочение, которое носит изотропный характер, т.е. в рассматриваемом интервале температур не происходят процессы технического намагничивания.

Это подтверждается исследованиями феррита Y₃Fe₅O₁₂ в интервале температур «перед» точкой Кюри с помощью поляризованных нейтронов [15, 16]. В работах [15, 16] было установлено, что при температуре T_C и несколько ниже T_C (T_C определялась по деполяризации нейтронного пучка) магнитных доменов нет; они появляются при некоторой температуре T_d, лежащей ниже T_C. Показано, что в интервале температур $T_d \div T_C$ существует состояние однородной намагниченности (монодоменное состояние). На основании этих экспериментов авторы [15, 16] считают, что в кубических ферритах вблизи Т_С нет намагничивания вследствие смещения доменных границ и необратимого вращения вектора намагничивания. Таким образом, при температуре Т_С кубических ферримагнетиков (феррит иттрия, магнитно-мягкие ферриты-шпинели) наблюдаемый рост коэрцитивной силы происходит не за счет истинной коэрцитивной силы H_C .

Автор настоящей статьи предполагает, что явление возрастания H_c вблизи T_C является эффектом однонаправленной обменной анизотропии, которая (как показано в работе [1]) возникает потому, что все ферримагнетики в области T_C становятся ферримагнетиками со «слабой» подрешеткой.

Поскольку вблизи T_C ферритов кубической симметрии нет технического намагничивания и, следовательно, здесь нет истинной остаточной намагниченности B_r (или она очень мала), то при охлаждении до температур ниже T_C однонаправленная магнитная анизотропия возникает в основном за счет намагниченности «сильной» подрешетки под влиянием геомагнитного поля ($H_g \approx 0, 4$ Э). Это поле, хотя оно и мало по величине, при температурах в области T_C создает значительную величину удельной намагниченности σ_g (вследствие возникновения эффекта Гопкинсона). Намагниченность σ_g в свою очередь создает обменное поле:

$$(H_{\rm ex})_{\rm ef} = J_{a-d}\sigma_g,$$

где J_{a-d} — параметр обменного взаимодействия между «слабой» и «сильной» подрешетками (в случае феррита-граната иттрия — между подрешетками *a* и *d*). Данное поле можно именовать полем «однонаправленной обменной анизотропии», создаваемым «сильной» подрешеткой (*d*-подрешеткой). Оно создает в «слабой» подрешетке (подрешетке *a*) псевдоостаточную (мнимую) намагниченность σ'_r .

Отсюда следует вывод, что экспериментаторы, которые измеряли остаточную намагниченность в ферритах в области $T_d \div T_C$ (рис. 1–3) методом «сбрасывания» измерительной катушки с образца, фиксиро-

вали не истинную σ_r , а псевдоостаточную намагниченность σ'_r , т.е. намагниченность, индуцированную в «слабой» подрешетке полем однонаправленной обменной анизотропии.

В случае феррита Gd₃Fe₅O₁₂ при температурах в области T_C «сильной» подрешеткой является d-подрешетка, а «слабыми» — a- и c-подрешетки. Так как в c-подрешетке находятся катионы Gd³⁺, имеющие большие магнитные моменты ($M_s = 7\mu_B$), и, кроме того, в a-подрешетке катионы Fe³⁺ имеют $M_s = 5\mu_B$, то они в сумме обусловливают возникновение большой псевдоостаточной намагниченности σ'_r . Для компенсации ее требуется приложить большое поле $H = H'_c$ (где H'_c — псевдокоэрцитивная сила, сводящая к нулю намагниченность σ'_r). В случае феррита Y₃Fe₅O₁₂ в «слабой» подрешетке (a) находятся катионы Fe³⁺, обусловливающие сравнительно небольшую величину σ'_r и, следовательно, малую величину H'_c .

В работе [1] показано, что однонаправленная обменная анизотропия проявляется и при температуре T_C , и даже выше T_C . Поэтому рост коэрцитивной силы, обнаруженный в некоторых ферритах-шпинелях при температурах выше T_C [5], не должен вызывать большого удивления. Наблюдаемый рост H_c при $T > T_C$ есть не что иное, как результат действия однонаправленной обменной анизотропии.

Однако все сказанное справедливо лишь для кубических ферримагнетиков. Для гексагональных ферритов и интерметаллидов редкая земля-железо (кобальт) некубической симметрии ситуация усложняется, поскольку в них магнитная анизотропия существует в области T_C (и даже выше T_C), и здесь, кроме псевдоостаточной намагниченности σ'_r и псевдокоэрцитивной силы H'_c существуют «истинные» σ_r и H_c .

Обратимся теперь к явлению возрастания магнитостатической вязкости при подходе к точке Кюри, обнаруженному в работах [6, 7] в ряде ферритов. Это явление тоже до сих пор не получило адекватной интерпретации.

На рис. 4 приведены температурные зависимости магнитной вязкости (за меру магнитной вязкости принималось время т перемагничивания образцов в слабом поле $H \approx 5$ Э) для Мп–Zn-феррита. Точка Кюри определялась по сильному спаду намагниченности I и аномалии возрастания H_c. На рис. 5 приведена зависимость магнитной вязкости для феррита Y₃Fe₅O₁₂. Точка Кюри для этого феррита определялась по спаду магнитной индукции насыщения B_s. Отметим, что в обычных ферромагнетиках, например Ni, возрастание магнитной вязкости при температуре T_C отсутствует. Интерпретация изменения магнитостатической вязкости в данных ферритах за счет изменения скорости движения доменных границ и вращения вектора намагниченности против сил магнитной анизотропии неприменима, так как здесь домены отсутствуют (нет диффузионного механизма магнитной вязкости [17]).

Рис. 4. Температурные зависимости магнитной вязкости τ и объемной намагниченности I феррита 32,4MnO; 13,8ZnO; 53,8Fe₂O₃

Рис. 5. Температурные зависимости магнитной вязкости τ и магнитной индукции насыщения B_s феррита Y_3 Fe $_5$ O $_{12}$

С точки зрения автора настоящей работы, механизм возрастания магнитостатической вязкости состоит в том, что в интервале температур $T_d \div T_C$, где магнетик находится в однодоменном состоянии, существует конкуренция обменного и магнитодипольного взаимодействия (проявление последнего в самой точке T_C ферритов было экспериментально доказано в работе [18]). Это приводит к метастабильному состоянию вектора σ'_r как в отсутствие поля, так и в слабых полях H, в которых измерялась магнитостатическая вязкость в интервале температур $T_d \div T_C$, что и является причиной возникновения магниторелаксационных явлений, в том числе магнитостатической вязкости.

Заключение

Показано, что наблюденное в кубических ферритах возрастание коэрцитивной силы и магнитостатической вязкости при подходе к точке Кюри обусловлено однонаправленной обменной анизотропией (действием обменного поля «сильной» подрешетки на «слабую»). Эта анизотропия создает псевдоостаточную (мнимую) намагниченность σ'_r и соответствующую ей псевдокоэрцитивную силу H'_c , которые при подходе к T_C возрастают (так как различие «сильной» и «слабой» подрешеток увеличивается). Вектор σ'_r вследствие возникновения в области T_C магнитодипольного взаимодействия катионов в «слабой» подрешетке находится в метастабильном состоянии, что вызывает возрастание магнитостатической вязкости.

Литература

- 1. Белов К.П. // УФН. 1999. 169. № 7. С. 797.
- 2. Белов К.П., Белов В.Ф. // ФТТ. 1961. 3, № 5. С. 1425.

- Белов К.П., Зайцева М.А., Педько А.В. // ЖЭТФ. 1959. 36, № 6. С. 1672.
- 4. Белов К.П., Белов В.Ф., Малевская Л.А. и др. // ФММ. 1961. **12**, № 5. С. 636.
- Большова К.М., Елкина Т.А. // Вестн. Моск. ун-та. Сер. Математика, механика, астрономия и физика. 1957. № 2. С. 5.
- 6. Телеснин Р.В., Овчинникова А.М. // Ферриты. Минск: Изд-во АН БССР. 1960. С. 325.
- 7. Телеснин Р.В., Курицына Е.Ф. // Там же. С. 320.
- 8. Вонсовский С.В., Шур Я.С. Ферромагнетизм. М.: Наука, 1948.
- 9. Gans R. // Ann. der Phys. 1915. 48. P. 514.
- 10. Forrer R. // J. Phys. Rad. 1930. I. P. 49.
- 11. Займовский А.С. // Бюл. Всесоюз. электротехн. ин-та (ВЭИ). 1941. **2**. С. 1.

- 12. Седов В.Л. Антиферромагнетизм гамма-железа. Проблема инвара. М.: Наука, 1987.
- Hansen P. // Proc. Int. School Phys. "Enrico Fermi". 1978. LXX. P. 56.
- Abe K., Miyamato Y., Chikazumi S. // J. Phys. Soc. Japan. 1976.
 41, No. 5. P. 1894.
- 15. *Драбкин Г.М.* Автореф. дис. ... д-ра. физ.-мат. наук. Л., 1971.
- 16. Драбкин Г.М., Забидаров Е.И., Ковалев А.В. // ЖЭТФ. 1975. **69**, № 5 (11). С. 1804.
- 17. Крупичка С. Физика ферритов. Ч. П. М.: Мир, 1976.
- Камилов И.К., Алиев Х.К. Статические критические явления в магнитоупорядоченных кристаллах. Махачкала: Изд. Дагест. науч. ц-ра РАН, 1993.

Поступила в редакцию 06.10.99

ГЕОФИЗИКА

УДК 519.95

ИЗМЕРЕНИЕ ПРОФИЛЯ ТЕМПЕРАТУРЫ В ХОЛОДНОЙ ПОВЕРХНОСТНОЙ ПЛЕНКЕ ОКЕАНА И МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ИНТЕРПРЕТАЦИИ РЕЗУЛЬТАТОВ

С. С. Задорожный, М. Л. Сердобольская, Е. Г. Андреев

(кафедра компьютерных методов физики; кафедра физики атмосферы)

Приведены результаты компьютерной обработки результатов измерений температуры. Использованные математические методы позволяют минимизировать ошибку измерений, связанную с инерционностью датчиков температуры, и выделить случайную ошибку. Проведен анализ модели измерения и выбрана модель, наилучшим образом согласующаяся с экспериментальными данными.

Введение

Для неравновесной границы раздела в системе океан-атмосфера характерны процессы тепломассообмена: испарение, ИК-излучение океана и контактный теплоперенос. Эти процессы, протекающие практически на самой поверхности океана (в 10-мкм радиационном слое), уносят огромное количество тепла в атмосферу и являются первопричиной глобальных переносов воздушных масс на Земле. Процессы выхолаживания радиационного слоя и поступление потока водяного пара в приводный слой атмосферы приводят к самоорганизации диссипативных структур вблизи неравновесной границы контакта вода-воздух: холодной пленки океана и слоя инверсии температуры в атмосфере. Выхолаживание океана вызывает подвод тепла к поверхности из более теплых нижележащих слоев воды. Знание профиля температуры в холодной пленке океана позволяет оценить поток тепла, поступающий к поверхности, на основании закона Фурье.

Впервые профили температуры внутри холодной пленки были зарегистрированы в начале 1970-х гг. [1]. Для измерения температуры служила малоинерционная медь-константановая термопара с диаметром спая порядка 30 мкм и постоянной вре-

мени инерции 1-1,5 мс. В процессе измерения термопара перемещалась в вертикальном направлении с достаточно высокой скоростью порядка 15 см/с, так как при более медленном перемещении невозможно точно зафиксировать мгновенный профиль температуры при волнении. При такой скорости инерционность термопары вносит искажения в измерения. В результате регистрируемые данные не могут непосредственно использоваться, и требуется дополнительная их обработка. Для решения подобных задач в настоящее время разработана теория измерительно-вычислительных систем [2]. Измерительно-вычислительные системы (ИВС) позволяют изучать характеристики объекта в ненаблюдаемой системе типа «объект-среда» на основании измерений, получаемых в системе «объект-среда-прибор». В процессе измерения характеристики объекта изучения и среда испытывают возмущения из-за взаимодействия с прибором, и поэтому выходной сигнал прибора не отображает реальных характеристик, которые присущи объекту в отсутствие прибора. Вычислительная часть ИВС преобразует результаты измерений к виду, какой они имели бы в невозмущенной системе типа «объект-среда», с максимально возможной точностью [3].