

Puc2. Мёссбауэровские спектры стекол, полученные при $T=80\,$ К

в спектрах исследуемых стекол, полученных при температуре 80 К (рис. 2). В каждом спектре хорошо виден магнитный подспектр с уширенными линиями и величиной эффективного магнитного поля $H_{\rm eff} = 512$ кЭ. Такое температурное изменение формы мёссбауэровского спектра характерно для нанокластеров оксида трехвалентного железа [7]. Количество ионов Fe³⁺, существующих в кластерной форме, в исследуемых нами стеклах довольно значи-

ГЕОФИЗИКА

УДК 550.362

ВЛИЯНИЕ КОМПОНЕНТНОГО СОСТАВА НА ИНТЕНСИВНОСТЬ ФОНОННОГО ТЕПЛОПЕРЕНОСА В БИНАРНЫХ ТВЕРДЫХ РАСТВОРАХ ПОРОДООБРАЗУЮЩИХ МИНЕРАЛОВ

Г. И. Петрунин, И. А. Ильин

(кафедра физики Земли)

На примере изоморфных серий плагиоклазов и синтетических гранатов изучен характер нелинейной зависимости решеточной теплопроводности многоатомных бинарных твердых растворов от их компонентного состава. Предложен вариант теоретического соотношения, удовлетворительно описывающий экспериментальные данные.

Большинство основных породообразующих минералов, входящих в состав вещества оболочки Земли, — многоатомные кристаллические диэлектрики, представляющие собой, как правило, твердые растворы изо- и гетеровалентного замещения. Это обусловливает существенные особенности поведения их решеточной теплопроводности по сравнению с простыми идеальными кристаллами [1, 2]. Изучение теплофизических характеристик таких структур, важное для прогнозирования тепловых свойств глубинных частей оболочки Земли, позволяет также продвинуться и в развитии теоретических представлений об осо-

тельно и для всех исследуемых образцов приблизительно одинаково: ~ 75% от общего количества железа, содержащегося в образцах. По-видимому, при формировании стекла из расплава окислов эти кластеры заполняют все имеющиеся в сетке стекла поры, а остальные ионы железа в двух- и трехвалентном состояниях встраиваются в положения с t-и о-координацией в сетке стекла. Именно незамеченный подспектр от кластерной компоненты Fe³⁺ в мёссбауэровских спектрах стекол с низкой концентрацией железа и приводил к завышенной оценке отношения Fe²⁺ / Fe³⁺. При увеличении концентрации железа в стекле относительная интенсивность этой кластерной компоненты уменьшается, и соответственно уменьшается ее вклад в оценку отношения количества ионов Fe²⁺ к количеству ионов Fe³⁺.

Работа выполнена при поддержке РФФИ (грант 00-02-16603).

Литература

- 1. Белюстин А.А., Останевич Ю.М., Писаревский А.М. и др. // ФТТ. 1965. 7, № 5. С. 144.
- 2. Virgo D., Mysen B.O. // Phys. Chem. Minerals. 1985. 12. P. 65.
- Zhou Zhongshen, Yuan Yisong, Hu Zhimin et al. // J. Non-Cryst. Sol. 1986. 84. P. 34.
- Levi R.A., Lupis C.H., Flinn P.A. // Physics and Chemistry of Glasses. 1976. 17, No. 4. P. 94.
- Iwamoto N., Tsunawaki Y., Nakagawa H. et al. // J. Non-Cryst. Sol. 1978. 29. P. 347.
- Русаков В.С., Котельникова А.А., Бычков А.М. // Физика и химия стекла. 1999. 25. № 4. С. 465.
- Суздалев И.П. Динамические эффекты в γ-резонансной спектроскопии М.: Атомиздат, 1979.

Поступила в редакцию 10.05.00

бенностях механизма решеточной теплопроводности сложных многоатомных соединений, которые находят сегодня широкое применение в различных областях науки и техники.

В настоящем сообщении приводятся результаты изучения нелинейного поведения решеточной теплопроводности двухкомпонентных твердых растворов в зависимости от концентрации компонент.

Минимум теплопроводности твердых растворов при промежуточном составе был обнаружен в 1950-х гг. при исследовании полупроводниковых сплавов [3]. Сходную тенденцию поведения теплопроводности некоторых природных минералов впервые наблюдал Хораи [4].

В целях более детального изучения физического механизма, ответственного за такое поведение теплопроводности (λ), нами было предпринято исследование серий искусственных кристаллов в системе иттрий-эрбий-алюминиевых гранатов (Y₃Al₅O₁₂-Er₃Al₅O₁₂) и природных минералов группы плагиоклазов в системе NaAlSi₃O₈ (альбит) — СаАl₂Si₂O₈ (анортит). Измерение теплофизических характеристик выполнено методом плоских температурных волн на установках, описанных в работах [5, 6]. Полученные результаты вместе с некоторыми литературными данными представлены на рис. 1-3. Нетрудно видеть, что наиболее низкие значения теплопроводности (λ) и температуропроводности (а) образцов изученных серий минералов достигаются при конкурирующем компонентном составе. При этом объемная теплоемкость ($C = C_p \rho$) в пределах каждой изоструктурной серии практически остается постоянной (~ 2707 Дж/(м 3 ·К) и ~ 2104 Дж/(м 3 ·К) для гранатов и плагиоклазов соответственно). Учитывая вид формулы Дебая для теплопроводности твердых тел: $\lambda = aC_p\rho = (1/3)C_p\rho vl$ и тот факт, что средняя скорость упругих волн (v) в твердых растворах, как правило, монотонно зависит от компонентного состава [12], естественно связать нелинейное поведение теплофизических характеристик a и λ с соответствующим поведением средней длины свободного пробега l, определяемой числом актов рассеяния фононов на единицу длины в кристалле. Действительно, в структуре твердого раствора атомы растворенной компоненты статистически распределены среди атомов замещаемой и могут быть рассмотрены как примесные, «дефектные», дополнительно рассеивающие фононные волновые пакеты в кристаллическом пространстве. С увеличением их концентрации, таким образом, растет эффективность рассеяния фононов.

В свое время А.Ф. Иоффе и А.В. Иоффе исследовали влияние больших концентраций примесей на теплопроводность полупроводниковых сплавов, используя в своих экспериментах твердые растворы изоморфных веществ [13]. Исходя из выражения эффективного сечения рассеяния для примесного атома в виде $S = nb^2$, они получили для отношения теплопроводностей чистого (λ_0) и примесного (λ) кристаллов соотношение

Рис. 2. Температуропроводность твердых растворов плагиоклазов ряда альбит (Ab) — анортит (An) в зависимости от компонентного состава; точки — авторские данные

Рис. 3. Теплопроводность плагиоклазов в зависимости от компонентного состава: ■ — данные [4], ▲ — [10], ▼ — [11], ● — авторские данные

$$\frac{\lambda_0}{\lambda} = 1 + \left(\frac{N}{N_0}\right) \frac{nl_0}{b},\tag{1}$$

где b — постоянная решетки простых веществ кубической сингонии, п — численный коэффициент, характеризующий степень локального искажения решетки и близкий к единице в большинстве случаев примесного замещения, l_0 — средняя длина свободного пробега фонона в чистом кристалле, N_0 и N – общее число и число примесных атомов в единице объема соответственно. Авторы [13] продемонстрировали также применимость выражения (1) для ряда двухкомпонентных полупроводниковых твердых растворов простых веществ вплоть до относительных концентраций примесей $N/N_0 \approx 30-35\%$, указав при этом, что коэффициент n не всегда можно считать равным единице даже для твердых растворов типа замещения. Однако выражение (1) получено для малых концентраций примесей и вполне возможно, что отклонения *n* от единицы для некоторых растворов типа замещения, которые наблюдали А. Ф. и А. В. Иоффе, могут быть связаны с применением этого соотношения для больших значений N/N_0 . В случае высоких концентраций второй компоненты, а также для многоатомных кристаллических структур, какими являются породообразующие минералы, нетрудно преобразовать выражение (1), следуя рассуждениям, изложенным в работе [13], к виду

$$\frac{\lambda_0}{\lambda} = \frac{C_0 v_0}{C v} \Big[1 + 2 \Big(\frac{N}{N_0} \Big) \frac{n l_0}{l_{\min}} \Big], \tag{2}$$

где C_0 , C — объемные теплоемкости, а v_0 , v — средние скорости звука для твердого раствора и вещества растворителя соответственно. В формуле (2) l_{\min} минимально возможная длина свободного пробега фонона, равная удвоенному расстоянию между атомами в кристалле многоатомного соединения. Как показано в работе [6], эта величина может быть оценена по формуле

$$l_{\min} = \frac{v}{\nu_{\max}} = \frac{hv}{k\Theta} = \left(\frac{4\pi M}{3N_a\rho}\right)^{1/3},\tag{3}$$

где ν_{\max} — максимальная частота дебаевского спектра, N_a — число Авогадро, M — средний атомный вес соединения, Θ — акустическая характеристическая температура Дебая, h — постоянная Планка. Из (1) и (2) следует выражение для отношения температуропроводностей кристаллов растворителя и твердого раствора:

$$\frac{a_0}{a} = \frac{v_0}{v} \left[1 + 2\left(\frac{N}{N_0}\right) \frac{nl_0}{l_{\min}} \right]. \tag{4}$$

Пунктирные кривые на рисунках отражают зависимости, рассчитанные в соответствии с полученными соотношениями (2)-(4). Значения скоростей звука гранатов и плагиоклазов взяты из работ [12, 14], *n* принято равным единице, а в качестве λ_0 при расчете ветвей зависимостей использованы экспериментальные данные для крайних членов изоструктурной серии. Полученные результаты свидетельствуют о том, что для многоатомных твердых растворов выбранное приближение (n = 1) приемлемо. Это подтверждает предположение А.Ф.Иоффе и А.В.Иоффе, что рассеяние фононов на атомах растворенной компоненты, рассматриваемых как примесные атомы, является основным механизмом, приводящим к нелинейной зависимости теплопроводности твердых растворов от компонентного состава.

Работа выполнена в рамках программы «Университеты России» и при поддержке РФФИ (грант 99-05-64025).

Литература

- Петрунин Г.И., Попов В.Г // Физика Земли. 1994. № 7-8. С. 35.
- Петрунин Г.И., Попов В.Г., Тимошечкин М.И. // ФТТ. 1989. 31, № 7. С. 139.
- 3. Драбл Дж., Голдсмид Г. Теплопроводность полупроводников. М., 1963.
- 4. Horai K. // J. Geophys. Res. 1971. 76. P. 1278.
- 5. Попов В.Г., Петрунин Г.И., Нестеров А.Г. // Деп. ВИНИТИ, № 4744-81 деп. М., 1981.
- Петрунин Г.И., Попов В.Г. // Физика Земли. 1994. № 11. С. 78.
- 7. Арутюнян С.Р., Багдасаров Х.С., Додокин А.П., Кеворков А.М. // Квант. электроника. 1984. 11. С. 1284.
- 8. Slack G.A., Oliver D.W. // Phys. Rev. 1971. B4, No. 2. P. 592.
- Oscotsky V.S., Parfenjeva L.S., Smirnov J.A. // Proc. Inter. Conf. Phonon. Scattering Solids. Paris, 1972. P. 254.
- 10. Birch F., Clark H. // Amer. J. of Sci. 1940. 238, No. 8. P. 529.
- 11. Sass J.H. // J. Geophys. Res. 1965. 70, No. 16. P. 4064.
- Беликов Б.П., Александров К.С., Рыжова Т.В. Упругие свойства породообразующих минералов и горных пород. М.: Наука, 1970.
- Иоффе А.В., Иоффе А.Ф. // ДАН СССР. 1954. 98, № 5. С. 757.
- Kitaeva V.F., Zharikov E.V., Chistyi J.L. // Phys. Stat. Solidi. 1985. 92. P. 475.

Поступила в редакцию 26.04.00