УДК 551.515.2

СТРУКТУРА ПОЛЯ ТЕМПЕРАТУРЫ И ВЛАЖНОСТИ В АТМОСФЕРНЫХ ИНТЕНСИВНЫХ КОНВЕКТИВНЫХ ВИХРЯХ

Е. П. Анисимова, Л. И. Милехин, А. А. Сперанская

(кафедра физики моря и вод суши)

Приводятся результаты измерений составляющих скорости, температуры и влажности в модельных атмосферных интенсивных конвективных вихрях. Показана правомерность логарифмического закона для распределения по высоте температуры и удельной влажности во внешнем районе и в приводном пограничном слое центральной области исследуемых вихревых систем.

Исследования выполнены на модельных вихрях, созданных в лабораторных условиях [1]. Изучались интенсивные конвективные вихри (ИКВ), для которых тепловое число Фруда $Fr^* = \frac{V_\infty^2}{Rg(\Delta T/T_\infty)} > 0.065$ (R и V_∞ — радиус вихревой системы и горизонтальная скорость на ее периферии, g — ускорение силы тяжести, $\Delta T = T_0 - T_\infty$, где T_0 и T_∞ — температура подстилающей водной поверхности в вихре и температура окружающего воздуха соответственно).

Аналогичные исследования в случае Fr* < 0.065 выполнены в работе [2]. Там же дано описание конструкции экспериментальной установки и методик измерения характеристик полей скорости, температуры и влажности. Для вихрей, рассматриваемых в настоящей работе, отношение максимальной скорости в вихре $V_{\rm max}$ к скорости на периферии вихревой системы V_{∞} , которое можно считать характеристикой степени концентрированности вихря, менялось от 1.5 до 3.5.

Примеры радиальных распределений вертикальной составляющей скорости V_z на разных высотах в вихре, для которого $Fr^* = 0.075$, приведены на рис. 1, *а*. Шкала высот на этом и последующих рисунках отнормирована на высоту слоя втока воздуха z_{in} на периферии вихревой системы. Скорости V_z рассчитаны по уравнению неразрывности с использо-

Рис. 1. Примеры радиальных распределений вертикальной составляющей скорости в ИКВ влажного типа на различных высотах (*a*) и картина линий тока в подобных вихрях (*б*) при $Fr^* = 0.075$: $z/z_{in} = 0.2$ (*l*), 0.6 (2) и 1.0 (3)

ванием инструментально измеренного распределения радиальной составляющей скорости по вертикали и по радиусу вихря. Расчет проводился в предположении осевой симметрии вихревой системы. Из рис. 1, а видно, что в рассматриваемых вихрях (Fr* > 0.065) в центральной части вихревой системы вблизи ее оси имеет место нисходящий ток воздуха: вертикальная составляющая скорости V_z здесь отрицательна. По мере удаления от центра вихря абсолютные значения V_z падают и на некотором расстоянии от оси скорость Vz меняет знак, т.е. нисходящее движение воздуха трансформируется в восходящее ($V_z > 0$). Зона восходящего движения сравнительно узкая, она локализована главным образом вблизи радиуса, соответствующего максимальным скоростям ($r_{\rm max}$). На рис. 1, б приведен типичный пример картины линий тока в рассматриваемых вихрях. Четко прослеживается структура конвективной вихревой системы с нисходящим током воздуха вдоль оси вихря. Видно, что в вихрях с Fr^{*} > 0.065 нисходящий ток воздуха опускается до водной поверхности.

На рис. $1, \delta$ хорошо видны особенности динамической структуры вихрей, отмеченные в работе [2]. Вблизи подстилающей водной поверхности имеет место входной поток (положительное направление оси радиусов — от центра к периферии) и расширение центральной части (ядра) вихря с высотой в нижней части вихревой системы.

Рассмотрим структуру поля температуры и влажности. Как показали данные инструментальных измерений, в центре вихря ($0 < r/r_{max} < 0.45$) температура воздуха слабо меняется вдоль радиуса и имеет максимальное значение (рис. 2, *a*). По мере удаления

от центра вихря температура уменьшается. Распределение температуры по вертикали в центре вихревой системы $(r/r_{\max} \leq 0.3)$ показывает (рис. 2, δ), что температура монотонно падает с увеличением высоты. При $r/r_{\max} \geq 0.45$ на вертикальных профилях температуры появляются инверсионные участки. По мере приближения к радиусу максимальных скоростей интенсивность инверсии растет, увеличивается и мощность инверсионных слоев, т.е. протяженность их по высоте. При $r/r_{\max} > 1$ интенсивность инверсии начинает уменьшаться, а зона инверсионного хода температуры охватывает почти всю исследованную область высот.

На периферии вихревой системы, а также в ее центре и на всех радиусах ниже инверсионного участка вертикальное распределение температуры может быть описано логарифмическим законом, справедливым для мелкомасштабной турбулентности. Правомерность логарифмического представления для распределения температуры по высоте можно оценить, используя параметр Монина–Обухова z/|L|, где L — масштаб Монина-Обухова [3]. Наши оценки параметра z/|L| показали, что в тех областях вихревой системы, где вертикальные распределения температуры хорошо удовлетворяют логарифмическому закону, величины $z/|L| \ll 1$. Таким образом, логарифмический закон изменения температуры с высотой, выявленный экспериментально в указанных выше областях вихревой системы, является правомерным [3]. В отличие от вихрей, для которых Fr* < 0.065 (см. [2]), логарифмическое изменение температуры с высотой в вихревых системах, рассматриваемых в настоящей работе, имеет место и в

Рис. 2. Распределения температуры по радиусу в ИКВ влажного типа на различных горизонтах (a): $z/z_{in} = 0.1$ (l), 0.4 (2) и 1.5 (3) и по вертикали (б) на разных расстояниях от центра вихря: $r/r_{max} = 0.15$ (l), 0.30 (2), 0.45 (3), 0.60 (4), 0.70 (5), 0.85 (6), 1.00 (7), 1.30 (8), 2.15 (9) и 3.00 (10) при Fr * = 0.075

Рис. 3. Вертикальное распределение относительной (*a*) и удельной (*б*) влажности на различных расстояниях от оси ИКВ влажного типа при $Fr^* = 0.075$: $r/r_{max} = 0.15$ (*I*), 0.30 (*2*), 0.45 (*3*), 0.60 (*4*), 0.70 (*5*), 1.00 (*6*), 1.30 (*7*) и 1.70 (*8*)

самом центре вихрей. Таким образом, в ИКВ при $Fr^* > 0.065$ область повышенных температур оттянута от оси и имеет форму тора.

Вертикальные распределения относительной влажности $\varepsilon(r, z)$ в ИКВ при Fr^{*} = 0.075 (рис. 3, *a*) показывают, что в этом случае в центре вихревой

системы 100%-я влажность существует только на подстилающей поверхности. По мере удаления от центра вихря относительная влажность в вихре возрастает и достигает 100% в области радиуса максимальных скоростей, охватывая все больший диапазон высот.

55

Конфигурация поля температуры во влажных ИКВ с Fr^{*} > 0.065 свидетельствует о наличии локального источника тепла, расположенного на некотором удалении от подстилающей поверхности в кольцевом районе, окружающем центральную область вихря. Данные измерений относительной влажности в вихре позволяют считать, что роль такого источника тепла играют фазовые переходы воды, интенсифицирующие локальное повышение температуры воздуха, которое существует при конвективном движении над горизонтальной нагретой поверхностью [4].

По данным измерений температуры и относительной влажности в вихрях были рассчитаны значения удельной влажности q(r, z). Поле удельной влажности в исследованных вихрях обладает всеми отличительными особенностями, присущими полю температуры. Эксперименты показывают, что механизм переноса тепла и влаги во влажных ИКВ в радиальном направлении одинаков [5]. Распределение удельной влажности по высоте q(z) во внешнем районе вихревой системы, а также на нижних горизонтах до начала зоны инверсии в центральной части вихря (рис. 3, δ) имеет монотонный характер и так же, как и распределение температуры, подчиняется логарифмическому закону:

$$q(z) = q_z^* \ln z + \text{const}, \tag{1}$$

где q_z^* — масштаб влажности [3]. (На рис. 3, δ зависимости вида (1) изображены пунктирными линиями.) Следовательно, тепло- и влагоперенос по вертикали во внешнем районе влажных ИКВ, для которых Fr^{*} > 0.065, и в их приводном пограничном слое на горизонтах ниже зоны инверсии осуществляется градиентным механизмом, свойственным мелкомасштабной турбулентности. Этот же механизм действует и в самом центре вихревой системы в отличие от ИКВ с $Fr^* < 0.065$.

Объяснение различия в структуре полей температуры и влажности для режимов вихревой системы, характеризующихся разными значениями числа Fr^* , следует искать в особенностях динамической структуры вихрей. В случаях, когда $Fr^* < 0.065$, внутренняя циркуляционная ячейка не достигает подстилающей поверхности, нисходящий ток воздуха в центре вихря не проникает ниже некоторого горизонта, а радиальный входной поток в пограничном приводном слое наблюдается почти до центра вихревой системы [5]. В режимах же, когда $Fr^* > 0.065$, оседание воздуха в центре вихревой системы имеет место до водной поверхности. Это обстоятельство делает понятным различие в структуре полей температуры и влажности при разных значениях числа Fr^* .

Работа выполнена при поддержке РФФИ (грант 99-05-64048).

Литература

- Анисимова Е.П., Матхеев С.С., Милехин Л.И., Сперанская А.А. // Вестн. Моск. ун-та. Физ. Астрон. 1995. № 5. С. 57 (Moscow University Phys. Bull. 1995. No. 5. P. 53).
- 2. Анисимова Е.П., Милехин Л.И., Сперанская А.А. // Вестн. Моск. ун-та. Физ. Астрон. 2001. № 1. С. 40.
- 3. *Монин А.С., Яглом А.М.* Статистическая гидромеханика. Ч. 1. М.: Наука, 1965.
- 4. Анисимова Е.П., Пивоваров А.А., Сперанская А.А., Суханов В.П. // Изв. АН СССР, ФАО. 1977. 13, № 3. С. 320.
- 5. *Анисимова Е.П.* Дис. ... д-ра физ.-мат. наук. М. (МГУ), 1992.

Поступила в редакцию 25.05.00