ФИЗИКА ТВЕРДОГО ТЕЛА

УДК 539.23

СТРУКТУРНЫЕ ОСОБЕННОСТИ ПЛЕНОК Та, ПОЛУЧЕННЫХ В РАЗРЯДЕ С ОСЦИЛЛИРУЮЩИМИ ЭЛЕКТРОНАМИ СО СМЕЩЕНИЕМ

Г. В. Смирницкая, В. В. Бибикова, Е. В. Лихушина

(кафедра общей физики для естественных факультетов)

Изучена структура тонких пленок Та в разряде с осциллирующими электронами при отрицательном напряжении смещения (в диапазоне $V_d = 0 \div 90$ В) в атмосфере Kr ($p_{\rm Kr} \approx 10^{-5}$ Topp). Обсуждается механизм взаимодействия медленных ионов Kr⁺ с атомами металла. Получены зависимости скорости напыления, концентрации газа в пленках, параметров элементарной ячейки, размеров областей когерентного рассеяния и микронапряжений в пленках от V_d . Обнаружено существование двух фаз: α -Та и β -Та, процентное содержание которых зависит от напряжения смещения.

В ряде работ [1–6] сообщалось, что при определенных условиях напыления (отрицательное смещение, наличие примесей, выбор материала подложки) наряду с ОЦК α -Та (a = 3.3058 Å) появляется тетрагональная модификация ОЦТ β -Та (a = 5.34 Å, c = 9.94 Å). Плотность α -Та составляет $\rho_{\alpha} = 16.6$ г/см³ (2 атома на элементарную ячейку), для β -Та плотность $\rho_{\beta} = 16.9$ г/см³ (16 атомов на элементарную ячейку) [4]. Единого мнения о причине формирования β -Та нет. В одних работах β -Та считается примесной фазой [1, 3], в других полиморфной [2, 4, 5].

В настоящей работе напыление пленок Та на стеклянные подложки проводилось в разряде с осциллирующими электронами при анодном напряжении 2 кВ, H = 320 Э, $p_{\rm Kr} \sim 10^{-5}$ Торр, разрядном токе $\sim 4 \div 6$ мА. На подложки, расположенные за щелями анода, подавалось отрицательное относительно анода напряжение смещения V_d (0 ÷ 90 В). Откачка системы производилась цеолитовым и магниторазрядным насосами, давление остаточных газов составляло ~ 10^{-7} Topp.

Толщина пленок измерялась микроинтерферометром МИМ-7 и варьировалась от 3000 до 7000 Å. Содержание Кг в пленках определялось омегатроном ИПДО-1.

В процессе нанесения пленок на подложку поступают: поток распыленных атомов металла; электроны из разряда; поток энергичных нейтралов инертного газа, отраженных от катода, а при подаче отрицательного смещения — также поток медленных ионов из разряда. Измерения показали, что поток (количество) атомов металла на 1 см² за 1 с составляет ~ $10^{14} \div 10^{15}$; поток нейтралов ~ 10^{12} , а поток ионов в зависимости от V_d изменяется от 10^{11} до 10^{14} , причем на вольт-амперной характеристике

Puc. 1. Зависимость ионного тока I_i , поступающего на подложку, от потенциала смещения V_d

(рис. 1) наблюдаются ступеньки (с интервалом приблизительно 15 В) относительно друг друга, что говорит о существовании дискретных областей ионизации вблизи анода.

Ионы, бомбардирующие пленку, могут вызывать разные эффекты. При энергии меньше пороговой они способны образовывать точечные дефекты, являющиеся центрами конденсации и зародышеобразования, которые стимулируют рост пленки [7, 8]. В зависимости от величины потока ионов и их энергии, а также от расположения точечных дефектов в растущей пленке возможны изменения не только периода решетки, но и симметрии элементарной ячейки, например переход кубической решетки в тетрагональную [9].

При энергии ионов близкой к пороговой или большей вырывание атомов металла приводит к обратному распылению, уменьшению скорости напыления и увеличению содержания атомов инертного газа в пленке. Эти процессы также отражаются на структуре и субструктуре пленок.

Зависимости скорости нанесения пленки на единицу разрядного тока (S) и содержания газа в пленке ($C_{\rm Kr}$) в зависимости от напряжения смещения V_d , как хорошо видно из рис. 2, a, осциллируют в противофазе друг с другом. Оценка пороговой энергии для Та при облучении ионами Kr по формуле, выведенной в работе [10] с учетом неупругих потерь и отношения масс M_2/M_1 (M_2 — масса атома металла, M_1 — масса иона газа):

$$E_{
m th} = U_0 \left[1.9 + 3.8 (M_2/M_1)^{-1} + 0.134 (M_2/M_1)^{1.24} \right],$$

где U_0 — энергия связи, приводит к значению $E_{\rm th}=33$ эВ.

Первый заметный минимум S наблюдается при $V_d = 40$ В (см. рис. 2, *a*). Учитывая, что максималь-

Рис. 2. Скорость нанесения пленки S и содержание Кг в пленке $C_{\rm Kr}$ (a), концентрация β -Та и α -Та (δ); параметр элементарной ячейки a для α -Та (s) и отношение c/a для β -Та (e) как функции напряжения смещения V_d

ная энергия, переданная ионами атомам пленки, рассчитывается по формуле

$$E_{\max} = 4(M_1M_2)/(M_1+M_2)^2 E_i,$$

где E_i — энергия иона, для $E_i = 40$ эВ получаем $E_{\max} = 34.6$ эВ, т.е. величина E_{\max} близка к пороговому значению $E_{\rm th}$. Атом, приобретший энергию, превышающую пороговую, покидает свое место в решетке. В результате образуется вакансия. Также могут возникать другие виды дефектов: дислокации, дефекты упаковки, границы зерен. Всякий раз, когда цепочка столкновений пересекает неоднородность в структуре решетки, последний атом регулярного ряда легко может превратиться в межузельный, а на его месте возникает вакансия [11].

Точечные дефекты, возникающие при облучении, имеют тенденцию образовывать скопления, например, межузельных атомов и вакансий, а последние создают поры. Поскольку атомный радиус $R_{\rm Kr} = 1.98$ Å, а $R_{\rm Ta} = 1.46$ Å, то, по-видимому, атомы Kr по границам зерен проникают в поры. При $E_i \geqslant E_{\rm th}$ концентрация Kr в пленке возрастает. Каждый очередной минимум на кривой $S(V_d)$

возникает, когда энергия ионов, соответствующая данной области значений V_d, достигает порогового значения. Опыты показали, что температура подложки Т при напылении пленок не превышала 70°С, т.е. осаждение пленок происходило в условиях переохлаждения (при $T/T_{\rm melt} < 1/3$). Высокая кинетическая энергия конденсирующихся частиц, их наклонное падение на подложку (наличие тангенциальной компоненты скорости в плоскости пленки) способствуют слиянию зародышей определенной ориентации, отвечающих минимуму свободной энергии и образованию текстур. Особенностью разряда с осциллирующими электронами является то, что конденсирующиеся частицы поступают из двух источников (катодов), расположенных симметрично относительно анода. Это приводит к возникновению аксиальных текстур с осью, ориентированной нормально к поверхности подложки. Все пленки были текстурированы по направлению [110].

Интенсивность, имп.

Структурные исследования проводились в монохроматизированном Си-К_а излучении. При отсутствии напряжения смещения ($V_d = 0$) наблюдались рефлексы (110), (112), (202) ОЦК а-Та. При $V_d \geqslant 10$ В наряду с α -Та появлялись рефлексы, относящиеся к плоскостям (200), (202) тетрагональной фазы ОЦТ *β*-Та. На рис. 3 представлены фрагменты дифрактограмм для пленок, напыленных при разных значениях V_d . Рефлекс при $2\theta = 37.67^\circ$ соответствует плоскости (110) а-Та. Рефлексы при $2\theta = 33.57^{\circ}$ и 37.60° относятся к плоскостям (200) и (202) *β*-Та.

Относительная объемная концентрация β -фазы определялась по отношению интегральной интенсивности всех линий В-Та к интегральной интенсивности всех линий α- и β-фаз Та с учетом толщины пленки. Из рис. 2, б видно, что соотношение между α - и β -фазами зависит от V_d и носит колебательный характер. При $V_d < 10~$ В в пленке

Рис. З. Фрагменты дифрактограмм пленок, напыленных при разных V_d

преобладает α -Та. При $V_d = 10 \div 20$ В энергия и плотность потока ионов способствуют формированию β -фазы Та, концентрация β -Та растет, а α -Та падает. Появление β -структуры возможно не только на стадии зарождения, но и в процессе роста в результате облучения ОЦК решетки α -Та медленными ионами Kr.

Концентрация В-Та в пленках, как видно из рис. 2, б, максимальна при энергиях ионов, близких к пороговым значениям. В работе [12] показано, что полиморфные превращения сопровождаются разрывом связей, перестройкой электронной системы и как следствие образованием новой структуры кристалла. В нашем случае при энергиях ионов, близких к пороговым значениям, имеет место разрыв связей и отрыв поверхностных атомов (величина S уменьшается). Наряду с упругими взаимодействиями ионов с атомами металла существенную роль играют и неупругие взаимодействия, вызывающие возбуждение атомов. Этот процесс носит резонансный характер и имеет вероятность, осциллирующую при изменении энергии ионов [8]. Если энергия незаполненного основного атомного уровня налетающего иона отличается от энергии одного из уровней внутренних оболочек атомов твердого тела менее чем на 10 эВ, то происходит возбуждение атома твердого тела. В случае α -Та и Кr⁺ имеем: $E_{M1} = 7.28$ эВ, $E_{M2} = 12.7$ эВ и $E_{Kr^+} = 13.9$ эВ. Следовательно, ион Kr может изменить конфигурацию одной из электронных оболочек а-Та и способствовать образованию *β*-Та. При этом сам ион, потеряв энергию, внедряется в кристаллическую решетку. Положения максимумов концентрации С_в и C_{Kr} (см. рис. 2, а и б) совпадают. Осциллирующая зависимость $C_{eta}(V_d)$ может быть связана также с резонансным взаимодействием ионов с кристаллической решеткой.

На рис. 2, в и г показаны изменения параметров элементарной ячейки α -Та и β -Та как функции V_d . Значения параметров решеток несколько больше, чем для объемных образцов, что, по-видимому, связано с внедрением атомов Kr в решетку Та. Параметр *а* для α -Та и отношение c/a для β -Та при изменении V_d до 60 эВ остаются постоянными в пределах ошибок измерений (± 0.02 Å). При $V_d > 60$ эВ, по-видимому, нарушение моноэнергетичности ионного пучка (наличие ионов более высоких энергий) и увеличение дозы ионного облучения приводят к образованию пор и изменению зависимостей параметров решетки от V_d . Вследствие этого появляются искажения ОЦТ решетки β -Та по направлению *с*.

Облучение пленки ионами отражается и на субструктуре пленок. Для определения средних размеров блоков когерентного рассеяния L в направлении, перпендикулярном к поверхности пленки, и средних величин микродеформаций $\varepsilon = <\Delta d/d >$ измерялись интегральные ширины рентгеновских дифракционных линий, относящиеся к двум порядкам отражений от кристаллических плоскостей {hkl}, и соответствующие ширины линий эталона. Значения L и є рассчитывались по методу тройной свертки. Профили как экспериментальных линий образца, так и эталона аппроксимировались функцией Коши [13].

Размеры областей когерентного рассеяния L и микродеформации ε для β -Та определялись по направлению [200]. Расчеты показали, что значение L_{β} изменяется в пределах от 500 до 1200 Å, а микродеформации — в пределах ($4.5 \div 6.5$) $\cdot 10^{-3}$. При энергиях ионов меньше $E_{\rm th}$ наблюдаются высокие значения ε_{β} и низкие значения L_{β} , что говорит о высокой плотности дислокаций. При энергии ионов больше $E_{\rm th}$ наблюдаются рост L_{β} и уменьшение ε_{β} , что связано с отжигом дефектов при этих значениях потоков и энергиях ионов.

Нижний предел плотности дислокаций, образующих межблочные границы, можно оценить из соотношения [9]

$$o = \frac{3}{\langle L \rangle^2}.$$

Для *β*-Та получаем

$$ho_{eta} = 3 \cdot 10^{10} \div 1.2 \cdot 10^{11} \text{ cm}^{-2}.$$

Выявить зависимость L от толщины пленок не удалось из-за большой толщины последних. Для линии (110) α -фазы размеры областей когерентного рассеяния L значительно меньше (от 120 до 800 Å), чем для β -фазы, и изменяются только в интервале $V_d = 10 \div 40$ В; при больших значениях V_d значения L достигают постоянной величины. Нижний предел плотности дислокаций для α -фазы равен

$$\rho_{\alpha} = 1.2 \cdot 10^{11} \div 3 \cdot 10^{12} \text{ cm}^{-2},$$

т.е. на порядок выше, чем для β -Та.

Микродеформации ε для α -Та изменяются незначительно и имеют среднее значение около $6 \cdot 10^{-3}$.

Следует заметить, что β -Та является устойчивой фазой. Дифрактограммы пленок, находящихся в атмосфере в течение двух лет, показали те же результаты в пределах ошибки измерений.

Выводы

 При напылении пленок Та в разряде с осциллирующими электронами со смещением наряду с ОЦК-фазой α-Та обнаружена устойчивая фаза ОЦТ β-Та. Образование α- и β-фаз связано с упругими и неупругими взаимодействиями ионов инертного газа с атомами металла.

2. Концентрации β -Та и α -Та в пленках являются осциллирующими функциями от V_d и зависят от энергии и плотности ионных потоков, облучающих пленку. Осцилляция связана с наличием в разряде вблизи анода дискретных областей ионизации.

3. Показано, что α -фаза Та обладает большей дисперсностью, чем β -фаза Та.

Авторы выражают искреннюю благодарность Г.Е. Горюнову за помощь при проведении экспериментов.

Литература

- 1. Read M.H., Altman C. // J. Appl. Phys. Lett. 1965. 7. P. 51.
- 2. Burbank R.D. // J. Appl. Cryst. 1973. 6. P. 217.
- Feinstein L.G., Hutterman R.D. // Thin Solid Films. 1973.
 16. P. 129.
- Westwood W.D., Waterhause N., Wilcox P.S. // Ta-Thin Films. L.: Acad. Press, 1973. P. 11.
- Wilcox P.S., Westwood W.D. // Can. J. Phys. 1971. 49. P. 1543.
- Hoogeveen R., Moske M., Geisler H., Samwer K. // Thin Solid Films. 1996. 275. P. 203.

- Stelmack L.A., Thurman C.T., Thompson G.K. // Phys. Rev. 1989. B37/38. P. 787.
- *Гусева М.Б.* // Изв. АН. СССР, сер. физ. 1986. **50**, № 3. С. 459.
- 9. Палатник Л.С., Фукс М.Я., Косевич В.Ш. Механизм образования и субструктура конденсированных пленок. М.: Наука, 1972.
- Matsunami N., Yamasura Y. // Atomic Data and Nucl. Data Tables. 1984. 31. P. 1.
- Лейшак К. Взаимодействие излучения с твердым телом и образование элементарных дефектов. М.: Атомиздат, 1979.
- 12. Павлов Е.В. Ионная имплантация в полупроводниках и других материалах. Вильнюс, 1985.
- 13. Иверонова В.И., Ревкевич Г.П. Теория рассеяния рентгеновских лучей. М.: Изд-во Моск. ун-та, 1972.

Поступила в редакцию 22.11.00

СООТНОШЕНИЕ ОБМЕННОЙ И РЕЛЯТИВИСТСКОЙ ЭНЕРГИЙ, ОПРЕДЕЛЯЮЩИХ ЛИНЕЙНЫЙ МАГНИТОЭЛЕКТРИЧЕСКИЙ ЭФФЕКТ В АНТИФЕРРОМАГНЕТИКЕ Сг203

С. С. Кротов, А. В. Лисняк

(кафедра общей физики для естественных факультетов; кафедра квантовой статистики и теории поля)

E-mail: alisniak@mail.ru

В рамках феноменологического подхода рассмотрен линейный магнитоэлектрический (МЭ) эффект в Cr_2O_3 . Показано, что продольная часть (в случае, когда внешнее поле параллельно оси третьего порядка) МЭ-эффекта в Cr_2O_3 обусловлена обменным взаимодействием, а поперечная — релятивистским, и на этой основе объяснено изменение тензора МЭ-эффекта α_{ij} при спин-флоп-переходе, а также найдены отличные от нуля в спин-флоп-фазе Cr_2O_3 компоненты вектора тороидального момента T.

Более ста лет назад Пьер Кюри впервые высказал идею о возможности индукции электрической поляризации магнитным полем и соответственно намагничивания — электрическим [1]. Но лишь после привлечения в физику твердого тела идей «магнитной симметрии» Ландау и Лифшиц (см. [2]) выдвинули предположение о том, что в некоторых веществах в принципе возможен магнитоэлектрический (МЭ) эффект, т.е. наличие в свободной энергии линейного по электрическому и магнитному полям члена. В работе Дзялошинского [3] содержался уже и конкретный пример магнитоэлектрика — антиферромагнетика Cr₂O₃. Несмотря на то что МЭ-эффект давно известен и дает заманчивую с точки зрения его приложений возможность влиять через магнитную составляющую системы на ее электрические свойства и наоборот, этот эффект до сих пор не нашел значимого применения в технике, в частности, из-за относительно малой величины энергии соответствующего взаимодействия. Тем не менее изучение МЭ-эффекта по-прежнему привлекает внимание исследователей во всем мире [4].

До сих пор одним из наиболее изученных МЭ-материалов является Cr_2O_3 , в котором МЭ-эффект был предсказан исходя из инвариантности МЭ-части термодинамического потенциала $(F_{ME} = -\alpha_{ij}E_iH_j$, где E_i и H_j — компоненты электрического и магнитного полей соответственно, i, j = x, y, z) относительно операции преобразований магнитного класса Cr_2O_3 : $E, 2C_3, 3U_2,$ $IR, 2S_6R, 3\sigma_dR$, где E — тождественное преобразование, C_3 — поворот вокруг вертикальной оси симметрии третьего порядка, U_2 — поворот вокруг горизонтальной оси второго порядка, I —

УДК 537.622.5