УДК 556.075

ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ ТОЛЩИНЫ ДИФФУЗИОННОГО ПОГРАНИЧНОГО СЛОЯ В ПРИДОННЫХ ГОРИЗОНТАХ МОЖАЙСКОГО ВОДОХРАНИЛИЩА

А. В. Савенко

(кафедра гидрологии суши географического факультета) E-mail: hydro@hydro.geogr.msu.su

В результате натурных экспериментов по изучению скорости растворения гипса в придонных горизонтах Можайского водохранилища определена эффективная толщина диффузионного пограничного слоя, равная (225±22) мкм. Сопоставление полученных значений с литературными данными показало, что в придонных водах океанов и небольших континентальных водоемов эффективная толщина диффузионного пограничного слоя имеет примерно одинаковый порядок величин и составляет 200 ÷ 2000 мкм.

Гетерогенные процессы, связанные с растворением и осаждением твердых фаз, а также с сорбцией и десорбцией растворенных компонентов, играют важную роль в формировании качества поверхностных вод. Кроме собственно химической реакции, являющейся своеобразным ядром гетерогенного процесса, взаимодействие твердой и жидкой фаз включает в себя стадии массопередачи, которые связаны с прохождением реагирующих веществ и продуктов реакции через тонкие пограничные слои, прилегающие непосредственно к поверхности раздела фаз и имеющие особое физико-химическое состояние [1]. При этом если скорость протекания процесса на какой-либо стадии значительно меньше, чем на остальных, то данная стадия будет лимитирующей и от ее кинетики будет зависеть общая скорость гетерогенного процесса [1, 2].

При растворении твердых фаз, соответствующем так называемой внешнедиффузионной кинетике процесса, наиболее медленной стадией является перенос растворенных веществ через диффузионный пограничный слой — тонкий слой жидкости толщиной порядка $10^{-2} \div 10^{-1}$ см, непосредственно прилегающий к поверхности раздела с твердой фазой, перенос растворенных компонентов в пределах которого происходит исключительно в результате молекулярной диффузии [2-4]. По мере удаления от границы раздела постепенно возрастает роль турбулентной диффузии, которая ведет к гомогенизации раствора. В силу этого толщина диффузионного пограничного слоя не является строго фиксированной величиной, и можно говорить лишь о ее некотором эффективном значении.

В случае внешнедиффузионной кинетики процесса растворения твердого тела эффективную толщину диффузионного пограничного слоя легко измерить экспериментально, используя уравнение Нернста-Льюиса-Уитмена [4-6]:

$$J = \frac{D}{\delta} \left(\overline{C} - C \right), \qquad (1)$$

где J — удельная скорость растворения твердого тела (г/см²·с), D — коэффициент молекулярной диффузии в растворе (см²/с), δ — эффективная толщина диффузионного пограничного слоя (см), \overline{C} и C — концентрации твердой фазы в насыщенном и реальном растворе за пределами диффузионного пограничного слоя соответственно (г/см³).

В июле 1997 г. нами были проведены натурные эксперименты по изучению скорости растворения гипса в придонных слоях воды Можайского водохранилища, результаты которых были использованы для определения толщины диффузионного пограничного слоя. Для подобных экспериментов гипс является весьма удобным веществом, поскольку его растворимость слабо зависит от температуры [7] и растворение строго соответствует внешнедиффузионной кинетике [8].

Предварительно взвешенные пластинки гипса с измеренной площадью поверхности устанавливались на закрепленной у дна металлической штанге на разном расстоянии от поверхности дна. Через 71 ч образцы гипса повторно взвешивались, и по разности масс находилась удельная скорость растворения. Затем по уравнению (1) рассчитывалась эффективная толщина диффузионного пограничного слоя. В расчетах использовалось значение концентрации насыщенного раствора сульфата кальция \overline{C} , равное 1.93 · 10⁻³ г/см³ [7]. При этом, поскольку концентрации кальция и сульфат-ионов в воде Можайского водохранилища составляли соответственно $4 \cdot 10^{-5}$ и $8 \cdot 10^{-6}$ г/см³, т.е. были примерно в 100 раз ниже, чем в насыщенном растворе, $\overline{C} \gg C$, без большой погрешности в расчетах величиной С можно было пренебречь. В силу низкой минерализации воды Можайского водохранилища (250 мг/л) коэффициент молекулярной диффузии был вычислен с использованием данных [9] по уравнению

$$D = 2.66 \cdot 10^{-7} \frac{\lambda_{\text{Ca}^{2+}}^{\infty} \lambda_{\text{SO}_4^{2-}}^{\infty}}{\lambda_{\text{Ca}^{2+}}^{\infty} + \lambda_{\text{SO}_4^{2-}}^{\infty}} = 6.4 \cdot 10^{-6} \text{ cm}^2/\text{c},$$

Расстояние от дна, см	Площадь поверхности образца, см ²	Масса образца, г		Удельная скорость растворения		Толщина диффузионного пограничного
		начальная	конечная	<i>J</i> *', г/см²∙сут.		слоя δ , мкм
50	9.28	4.554	2.872	0.0612	(0.0484)	221
40	11.32	5.806	3.774	0.0606	(0.0479)	223
30	13.34	6.437	4.322	0.0536	(0.0424)	252
20	11.52	4.611	2.347	0.0664	(0.0525)	203
15	24.08	10.360	6.426	0.0552	(0.0436)	244
10	18.72	9.451	6.408	0.0549	(0.0434)	246
5	14.50	8.812	5.712	0.0722	(0.0571)	187
			Среднее	0.0606	(0.0479)	225 ± 22

Скорость растворения гипса и толщина диффузионного пограничного слоя в придонных горизонтах Можайского водохранилища

*) В скобках приведена скорость растворения в пересчете на безводный сульфат кальция.

где $\lambda_{SO_4^{-}}^{\infty}$ и $\lambda_{Ca^{2+}}^{\infty}$ — величины предельных эквивалентных электропроводностей сульфат-ионов и кальция [10]. Результаты расчетов эффективной толщины диффузионного пограничного слоя приведены в таблице.

Для семи образцов гипса, расположенных на расстоянии $5 \div 50$ см от дна при общей глубине на данной вертикали 14 м, эффективная толщина диффузионного пограничного слоя находилась в пределах $187 \div 252$ мкм, не обнаруживая закономерной связи с расстоянием от дна. Среднее значение эффективной толщины диффузионного пограничного слоя составило (225 ± 22) мкм.

Полученные значения толщины диффузионного пограничного слоя в Можайском водохранилище хорошо согласуются с измеренными величинами в придонных слоях океана. Так, авторы работы [6] в результате аналогичных экспериментов с пластинками алебастра получили значение толщины диффузионного пограничного слоя на дне восточной части Тихого океана, равное (475±50) мкм. Несколько большие величины были получены при использовании радиоизотопных методов (500÷1700 мкм) [6], а также при измерениях с помощью микроэлектродов (200÷1500 мкм) [5, 11, 12].

Таким образом, в придонных водах океанов и небольших континентальных водоемов эффективная толщина диффузионного пограничного слоя имеет примерно одинаковый порядок величины и составляет 200 ÷ 2000 мкм.

Работа выполнена при поддержке Миннауки РФ по программе «Глобальные изменения природной среды и климата».

Литература

- 1. Кокотов Ю.А., Пасечник В.А. Равновесие и кинетика ионного обмена. Л.: Химия, 1970.
- Жуховицкий А.А., Шварцман Л.А. Физическая химия. М.: Металлургия, 1968.
- 3. *Левич В.Г.* Физико-химическая гидродинамика. М.: Изд-во АН СССР, 1960.
- 4. *Кафаров В.В.* Основы массопередачи. М.: Высш. школа, 1962.
- Archer D., Emerson S., Smith C.R. // Nature. 1989. 340, No. 6235. P. 623.
- Santschi P.H., Bower P., Nyffeler U.P. et al. // Limnol. and Oceanogr. 1983. 28, No. 5. P. 899.
- Лурье Ю.Ю. Справочник по аналитической химии. М.: Химия, 1989.
- 8. Зверев В.П., Ильин В.А // Миграция химических элементов в подземных водах СССР. М.: Наука, 1974. С. 32.
- 9. Робинсон Р., Стокс Р. Растворы электролитов. М.: ИЛ, 1963.
- Дэвис С., Джеймс А. Электрохимический словарь. М.: Мир, 1979.
- Glud R.N., Gundersen J.K., Revsbech N.P., Jorgensen B.B. // Limnol. and Oceanogr. 1994. 39, No. 2. P. 462.
- Jorgensen B.B., Revsbech N.P. // Limnol. and Oceanogr. 1985. 30, No. 1. P. 111.

Поступила в редакцию 12.03.01