УДК 621.315.592

ОБМЕННЫЕ ЭФФЕКТЫ В ДВУМЕРНОМ ЭЛЕКТРОННОМ ГАЗЕ ПОЛУПРОВОДНИКА ПРИ КОНЕЧНЫХ ТЕМПЕРАТУРАХ

А. Г. Миронов

(кафедра физики полупроводников)

E-mail: scon282@phys.msu.su

Рассчитана обменная энергия электронов основной подзоны размерного квантования в узкой квантовой яме при произвольных концентрациях и температурах. Определены условия перехода двумерной электронной системы в спиново-поляризованное состояние за счет выигрыша в обменном вкладе в свободную энергию. Показано, что в определенной области концентраций при изменении температуры могут последовательно происходить два перехода — сначала в поляризованное, а затем в неполяризованное состояние.

Введение

Вопрос о возможной неустойчивости неполяризованного состояния двумерной электронной системы за счет усиления эффектов обмена при низких концентрациях и температурах неоднократно обсуждался в литературе (см., напр., [1, 2]). Наряду с такими явлениями, как вигнеровская кристаллизация и перераспределение электронов в двойных квантовых ямах, эта задача теоретически рассматривалась в основном лишь для предельно низких температур. Прогресс в технологии изготовления наноструктур, позволяющий получать структуры с контролируемыми параметрами, повысил интерес к выяснению условий возможного проявления указанных эффектов в полупроводниковых сверхрешетках и структурах с множественными ямами. Так, в экспериментальной работе [3] высказывалось предположение о существенной роли кулоновского взаимодействия в наблюдавшихся аномалиях температурной зависимости проводимости. Однако интерпретация поведения системы при изменении температуры затруднена из-за отсутствия достаточно полных расчетов кулоновских вкладов в энергию при конечных температурах. Поэтому представляет интерес расчет температурной зависимости обменной энергии двумерной системы при конечных температурах (для почти вырожденного распределения электронов в довольно узком интервале температур соответствующий расчет выполнен в работе [4]). Цель настоящей работы состоит в нахождении обменной энергии двумерного электронного газа в широкой области концентраций и температур и в определении границы области на фазовой плоскости концентрация-температура, отвечающей спиново-поляризованному состоянию, а также температурной и концентрационной зависимости поляризации.

1. Обменная энергия двумерной системы электронов

Рассмотрим систему электронов в узкой квантовой яме или в одном слое сверхрешетки и будем считать яму достаточно узкой, так что заселена лишь низшая подзона размерного квантования. Нейтральность системы в целом, вследствие которой можно не учитывать прямого кулоновского взаимодействия, обеспечивается, например, однородным легированием («модель желе»). Расстояние между слоями сверхрешетки будем считать достаточно большим, и поэтому можно пренебречь перекрытием волновых функций электронов соседних слоев и эффектами перераспределения электронов между слоями.

Пусть ν — поверхностная концентрация электронов, ρ_0 — постоянная плотность состояний электронов (полная, для обоих направлений спина), $E(\mathbf{p})$ энергия двумерного свободного движения электронов вдоль плоскости слоя (отсчитываемая от дна основной подзоны размерного квантования), \mathbf{p} двумерный волновой вектор; закон дисперсии $E(\mathbf{p})$ будем считать изотропным и вырожденным по спину. Химический потенциал μ_{σ} невзаимодействующих электронов со спином σ , входящий в равновесную функцию распределения $n_{F\sigma}(E(\mathbf{p})) = (1 + + \exp[(E(\mathbf{p}) - \mu_{\sigma})/kT])^{-1}$, связан с их концентрацией ν_{σ} соотношением $\mu_{\sigma} = kT\eta_{\sigma} = kT\ln(\exp(s_{\sigma}) - 1)$, где $s_{\sigma} = 2\nu_{\sigma}/(\rho_0 kT)$.

В отсутствие поляризации $\nu_{\sigma} = \nu_{-\sigma} = \nu/2$, $\mu_{\sigma} = \mu_{-\sigma} = \mu$ и $\eta(s) = \mu/kT = \ln(\exp(s) - 1)$, где $s = \nu/(\rho_0 kT)$.

Обменная энергия электронов (в расчете на единицу площади) дается стандартным выражением

$$egin{aligned} F_x &= -S^{-2}\sum_{\sigma}\sum_{\mathbf{k}_1,\mathbf{k}_2}n_{F\sigma}\left(E(\mathbf{k}_1)
ight)n_{F\sigma}(E(\mathbf{k}_2)) imes\ & imes\int d\mathbf{r}_1d\mathbf{r}_2\exp\left(-i(\mathbf{r}_1\mathbf{k}_2+\mathbf{r}_2\mathbf{k}_1)
ight) imes\ & imes\left(e^2/(2arepsilon|\mathbf{r}_1-\mathbf{r}_2|)
ight)\exp\left(i(\mathbf{r}_1\mathbf{k}_1+\mathbf{r}_2\mathbf{k}_2)
ight), \end{aligned}$$

где ε — диэлектрическая проницаемость, \mathbf{r}_1 и \mathbf{r}_2 — двумерные радиус-векторы, S — площадь слоя. Проводя в (1) интегрирование по координатам и учитывая, что двумерный фурье-образ кулоновского потенциала имеет вид V(q)=2p/q, получим выражение

$$egin{aligned} F_x(\eta(s),T) &= -(e^2/arepsilon)(\pi/2)^{1/2}(
ho_0 kT)^{3/2} imes \ & imes \int\limits_0^\infty dt \{\Phi_{-1/2}(\eta(s)-t^2)\}^2, \end{aligned}$$

где

$$\Phi_{\lambda}(\eta) = \Gamma(\lambda+1)^{-1} \int_{0}^{\infty} dx \ x^{\lambda} [1 + \exp(x-\eta)]^{-1} \quad (3)$$

— интеграл Ферми с индексом λ . Выражение, подобное (2), было получено для трехмерного случая в работе [5] (см. также [6]).

Результат численного интегрирования в (2) можно представить интерполяционной функцией от *s* вида

$$F_x(s,T) = -(e^2/\varepsilon)(\rho_0 kT)^{3/2} C_x s^{3/2} G(s), \quad (4)$$

$$G(s) = \sqrt{rac{lpha(s+b_1s^2)+b_2s^3}{1+(b_1+eta)s+b_1lpha s^2+b_2s(\kappa\ln(1+s)+s^2)}},$$

причем параметры $C_x = (32/9\pi)^{1/2} \approx 1.06$, $\alpha = 9\pi^3/512$, $\kappa = \pi^2/8$ и $\beta = (4/\sqrt{3}) - 2$ обеспечивают требуемое поведение при больших и малых s, а $b_1 = 0.2685$ и $b_2 = 0.04547$ — подгоночные параметры. Функция G(s) определена так, что $G(s) \to 1$ в случае предельно сильного вырождения (при $s \to \infty$). Среднеквадратичная относительная ошибка этой аппроксимации в интервале 0 < s < 25 составляет $2 \cdot 10^{-4}$. Отметим, что декларированная в работе [3] точность аппроксимации в 1% достигается лишь при s > 4, а на нижней границе рассмотренного в [3] интервала, при s = 2.5, относительная ошибка достигает 5%.

2. Условия перехода в поляризованное состояние

Кроме найденного выше обменного вклада полная свободная энергия содержит еще вклады (от кинетической энергии и энтропии) невзаимодействующих электронов:

 $F_{i,j} = (T \ \nu_{-}) =$

$$= -kT\rho_0 \int_0^\infty d\varepsilon \ln\left[1 + \exp\left(\frac{\mu_\sigma - \varepsilon}{kT}\right)\right] + \mu_\sigma \nu_\sigma = (5)$$
$$= \rho_0 (kT)^2 \Phi_1 (\eta_\sigma) + \mu_\sigma \nu_\sigma = (\nu_\sigma^2/\rho_0) K (s_\sigma (\nu_\sigma, T)),$$

где Φ_1 — интеграл Ферми (см. (2)). Эти вклады, как и обменный, аддитивны по спину. Поведение «идеального» вклада в свободную энергию F_{id} описывается следующим интерполяционным выражением для функции K(s):

$$egin{aligned} &K\left(s
ight) pprox ilde{K}\left(s
ight) = \ &= rac{2}{s}\left[\ln\left(e^{s}-1
ight) + rac{1+a_{1}s+\gamma a_{2}s^{2}}{1+\left(a_{1}+\delta
ight)s+a_{2}s^{2}}
ight] - 1, \end{aligned}$$

где $\gamma = \pi^2/6$, $\delta = 1/4$, $a_1 = 13.10$, $a_2 = 1.90$, $a_3 = 4.75$. Отметим, что $K(s) \to 1$ при $s \to \infty$. Как и выше, греческими символами обозначены точные константы, обеспечивающие правильное поведение при $s \to 0$ и при $s \gg 1$, а a_1 , a_2 , a_3 — подгоночные параметры. Среднеквадратичная ошибка этого приближения составляет 0.44%. Однако, поскольку в ряде случаев результат для условий перехода в поляризованное состояние весьма чувствителен к качеству аппроксимации, мы использовали более точный (с относительной ошибкой не более 10^{-5}), хотя и более трудоемкий подход, основанный на аппроксимации функции $\ln(1+x)$ в подынтегральном выражении в (5) интерполяционным многочленом [7].

Объединяя выражения (4) и (5), для вклада электронов со спином σ в полную свободную энергию (в расчете на единицу площади) получаем

$$F_{\sigma} = \left(\nu_{\sigma}^{2}/\rho_{0}\right) \left[K\left(s_{\sigma}\right) - \left(\nu_{C}/2\nu_{\sigma}\right)^{1/2}G\left(s_{\sigma}\right)\right], \quad (6)$$

где $\nu_C = (C_x/\pi d_C)^2$ — характерная «кулоновская» концентрация, а $d_C = \varepsilon/(2\pi\rho_0 e^2)$. Взяв для оценки $\rho_0 = 3 \cdot 10^{13}$ эВ⁻¹·см⁻², $\varepsilon = 12.7$, находим: $d_C = 4.7$ нм, $\nu_C = 5.24 \cdot 10^{11}$ см⁻². Одновременно введем характерную «кулоновскую» температуру $T_C = \nu_C/(k\rho_0)$; при принятых значениях параметров $T_C = 202$ К.

В отсутствие поляризации ($\nu_{\sigma} = \nu_{-\sigma} = \nu/2$ и $s_{\sigma} = s_{-\sigma} = s$) и при $T \to 0$, когда можно считать, что $K(s) \approx G(s) \approx 1$, мы имеем:

$$F_{\rm unp}(\nu) = \sum_{\sigma} F_{\sigma} \approx \left(\nu^2 - \nu_C^{1/2} \nu^{3/2}\right) / (2\rho_0) \,.$$
(7)

Отсюда видно, что ν_C есть концентрация, при которой обменное слагаемое компенсирует вклад невзаимодействующих частиц. Отметим, что переходу в поляризованное состояние отвечают концентрации, составляющие лишь небольшие доли от ν_C . Действительно, соответствующие концентрации можно оценить, сравнивая (7) с аналогичным выражением для полностью поляризованной системы ($\nu_{\sigma} = \nu$, $\nu_{-\sigma} = 0$),

$$F_{\rm pol} = \left[(2\nu)^2 - \nu_C^{1/2} (2\nu)^{3/2} \right] / (4\rho_0) \,. \tag{8}$$

При T = 0 К свободная энергия системы в поляризованном состоянии (8) оказывается меньшей энергии неполяризованного состояния (7) при $\nu < \nu_{
m cr} = a \nu_C$, где $a = 3 - \sqrt{8} \approx 0.17$.

Рассмотрим теперь свободную энергию частично поляризованной системы при конечных температурах. Положим $\nu_{\sigma} = (1+z)\nu/2$ и $\nu_{-\sigma} = (1-z)\nu/2$, где величина z, 0 < z < 1, равная доле электронов, изменивших направление спина, определяет степень поляризации системы. С учетом сказанного выше выберем в качестве масштабов концентрации и температуры величины $\nu_u = a\nu_C$ и $T_u = aT_C$ соответственно (при принятых значениях параметров $\nu_u \approx 9 \cdot 10^{10}$ см⁻², $T_u \approx 35$ K) и введем безразмерные переменные $y = \nu/\nu_u$ и $t = T/T_u$ (при этом s = y/t). Запишем свободную энергию идеального газа, обменный вклад и полную свободную энергию в безразмерном виде:

$$\begin{array}{l} q \left(s \right) = s^{2} K \left(s \right), \quad g \left(s \right) = s^{3/2} G \left(s \right), \\ f \left(s, t \right) = q \left(s \right) - g \left(s \right) / \left(a t^{1/2} \right). \end{array}$$

Тогда полная свободная энергия частично поляризованной системы приобретает следующий вид:

$$egin{aligned} &F\left(tT_u,y
u_u,z
ight)=\left[(kT)^2\,/4
ho_0
ight]arphi\left(t,y,z
ight),\ &arphi\left(t,y,z
ight)=f\left(rac{y}{t}(1+z),t
ight)+f\left(rac{y}{t}(1-z),t
ight). \end{aligned}$$

Равновесное значение доли изменивших ориентацию спинов $z = z_{eq}(y,t)$, т.е. степень поляризации системы, находится из условия абсолютного минимума F по z; корни $z_{eq}(y,t)$ уравнения $\partial F/\partial z = 0$ определялись численными методами. Далее находилась критическая концентрация $y_b(t)$, отвечающая переходу в поляризованное состояние при заданной температуре t. Это означает, что при фиксированной температуре и при $y < y_b(t)$ свободная энергия (частично) поляризованной системы F_{pol} меньше, чем соответствующая величина F_{unp} в отсутствие поляризации. Температурная зависимость критической концентрации $y_b(t)$ показана на рис. 1.

Как и ожидалось, область значений температуры, при которых возможен переход в поляризованное состояние и существует нетривиальное решение для $z_{
m eq}(y,t)$, имеется лишь при $y\sim 1$, т.е. при достаточно малых концентрациях $\nu \sim a\nu_C$ (см. рис. 1). Менее очевидным, однако, представляется то обстоятельство, что в некотором, хотя и небольшом, интервале концентраций 1 < y < 1.04 одному и тому же значению у отвечают два решения уь. Это означает, что при понижении температуры система испытывает два перехода - сначала в поляризованное состояние, а затем снова в неполяризованное. Зависимость степени поляризации $z_b(t)$ на границе перехода от температуры показана на рис. 2. Как видно из рис. 1, переход в поляризованное состояние возможен только при y < 1.04, причем он совершается сразу в состояние с конечной степенью

Puc. 1. Зависимость безразмерной критической концентрации $y_b=\nu/\nu_u$ от безразмерной температуры $t=T/T_u$

Puc. 2. Степень поляризации z_b на границе перехода в поляризованное состояние как функция температуры $t=T/T_u$

Рис. 3. Температурные зависимости свободной энергии в расчете на один электрон (отнесенной к kT_u) для поляризованного (сплошная кривая) и неполяризованного (штриховая кривая) состояний

поляризации, очень быстро возрастающей до единицы при понижении температуры. Температурная зависимость полной удельной (т.е. в расчете на один электрон) свободной энергии, отнесенной к характерной энергии kT_u , приведена на рис. 3, где сплошная кривая относится к поляризованной фазе $(F_{\rm pol})$, а штриховая — к неполяризованной $(F_{\rm unp})$.

Таким образом, учет температурной зависимости обменного вклада в свободную энергию двумерного электронного газа позволил определить область существования поляризованного состояния, а также концентрационную и температурную зависимости поляризации системы.

Автор благодарен И.П. Звягину за полезное обсуждение.

Работа выполнена при поддержке РФФИ (грант 00-02-16676) и программы «Университеты России — фундаментальные исследования».

Литература

- 1. Ceperley D. // Phys. Rev. 1978. B18. P. 3126.
- 2. Rajagopal R.K., Kimball J.C.// Phys. Rev. 1997. B15. P. 2819.
- Richter G., Stolz W., Thomas P., Koch S., Marsch K., Zvyagin I.P. // Superlattices and Microstructures. 1997. 22. P. 475.
- Totsuji H., Tachibana H., Totsuji C., Nara S. // Phys. Rev. 1995. B51. P. 11148.
- 5. De Witt E. // J. Nucl. Energy. 1961. C2. P. 27.
- Kraeft W.-D., Kremp D., Ebeling W., Röpke G. Quantum Statistics of Charged Particle Systems. Berlin: Akademie-Verlag, 1986 (Крефт В.-Д., Кремп Д., Эбелинг В., Рёпке Г. Квантовая статистика систем заряженных частиц. М.: Мир, 1988).
- Справочник по специальным функциям. / Под ред. М. Абрамовица и И. Стиган. М.: Наука, 1979.

Поступила в редакцию 26.03.01

АСТРОНОМИЯ

УДК 523.746

ОБ ЭЛЕКТРИЧЕСКИХ ПОЛЯХ В ЗВЕЗДАХ

В. И. Григорьев, В. С. Ростовский

(кафедра квантовой теории и физики высоких энергий)

В рамках электронно-протонной равновесной модели звезд при учете принципа Паули обсуждаются физические причины наличия в их недрах электрических полей и ход величины их напряженности; даются численные оценки на примере Солнца.

В подавляющем числе работ планеты и звезды рассматриваются как тела, в толще которых электрические поля отсутствуют. В частности, в таких известных книгах, как [1, 2], приводится как нечто общепризнанное мнение о квазинейтральности плазмы в недрах Солнца и звезд (значит, и об отсутствии там потенциальных электрических полей). Правда, было немало работ, авторы которых высказывали другое мнение. Обзор такого рода публикаций (в основном касающихся проблемы структуры короны и солнечного ветра) приведен в работе [3].

Утверждение об отсутствии электрических полей внутри планет, и особенно звезд, обычно обосновывается эквипотенциальностью любого проводящего тела. Однако в действительности электростатическое поле отсутствует лишь внутри однородных (как физически, так и химически) проводников.

При наличии неоднородностей внутренних напряжений в твердотельных проводниках (здесь мы не будем касаться интересного вопроса о возможной роли химических неоднородностей) электроны вытесняются из областей с большими в области с меньшими механическими напряжениями (бароэлектрический эффект). Теория этого эффекта и ее применение к объяснению (и предсказанию) ряда электрических и магнитных явлений в планетах земной группы, имеющих четко выраженную границу поверхности, наиболее полно изложены в монографии [4].

Непосредственно к звездам — плазменным образованиям, не имеющим резких внешних границ, на которых могли бы скапливаться вытесняемые из недр электроны, эта теория неприложима. Но это не означает, что в звездах отсутствует перераспределение зарядов и вызываемое им электрическое поле. В настоящей работе обсуждается возможный механизм формирования этого поля.

Протонная масса почти в 2000 раз превосходит электронную. Благодаря этому влияние гравитационного поля на протонную компоненту и соответственно воздействие распределения протонов на напряженность гравитационного поля значительно существеннее, чем воздействие электронной компоненты.